PROBLEM CORNER

Proposed by
J.M. Gamboa
jmgamboa@ucm.es
Universidad Complutense de Madrid and
Tomás Recio
trecio@nebrija.es
Universidad Antonio de Nebrija

To become a mathematics teacher in a public High School in Spain it is not essential to have a Mathematics B.Sc. degree (it can be a degree on a different scientific discipline) but you do have to achieve, first, a Master degree focusing on relevant pedagogical aspects for pre-service teacher training. Then, you have to pass some public exam (usually called "Oposiciones" by Spanish people), that usually takes place every two years, and it is organized and implemented in each of the Spanish regions (as the development of national education policies is a competence of the different regional authorities, like it happens with the States in the U.S.A.). Obviously, getting prepared and passing the exam is a very relevant task for thousands of young graduate students, that aim to start an professional career as mathematics teachers.

Roughly speaking, the exam includes three parts, where the candidate is asked to:

- give a lecture on the mathematics underlying a certain subject chosen by the examination jury from a publicly announced list, related to the Mathematics Secondary Education Curriculum (e.g. "Limit of functions, notion of continuity, Bolzano's Theorem"),
- to solve some problems, proposed by the jury, of a level corresponding to the first two years of the Bachelor Degree in Mathematics in any of the Spanish Universities, and
- to present and defend a written project dealing with their personal perception of the didactical issues involved in the teaching of mathematics courses in the Secondary Education classroom.

Let us remark that no technological tool (calculator, tablet, laptop, smarthphone, ...) is allowed during the exam, for addressing the proposed problems.

The last of these public "Oposiciones" exams was carried out in June 2021, and among the problems proposed in that call we have chosen two that we find especially attractive, due to their geometric content, and because they allow us to present more than one solution and to discuss some subtle details.

Bearing in mind the restrictions of the "Oposiciones" exam, we have not consider the use of CAS or DGS tools to solve these problems. Yet, we would highly appreciate to receive solutions from the readers of the eJMT Problem Corner that emphasize the potential role of CAS/DGS to solve (fully or partially), explore or extend such problems.

We encourage the readers of the eJMT Problem Corner to attempt solving them, as so many young Spanish candidates to become mathematics teachers ought to do!!

Problem 1

The shaded area of the figure measures $100 \mathrm{~cm}^{2}$. The two overlapping smaller squares are equal. The side of the larger square is divided into three segments of equal length by the vertices of the smaller squares. Calculate the area of the largest square.

First solution. Let us find firstly the relationship between the lengths of the sides of the right triangle $\triangle N E M$ in the figure.

To that end we will employ coordinates with respect to the orthonormal reference system

$$
\mathcal{R}:=\{B ; \vec{u}:=\overrightarrow{B G}, \vec{v}:=\overrightarrow{B F}\}
$$

in the euclidean plane. Thus, $B=(0,0), F=(0,1)$ and $L=(1,3)$, so $\overrightarrow{F L}=(1,2)$. In addition, $E=(0,2)$ and $G=(1,0)$, thus $\overrightarrow{G E}=(-1,2)$. Therefore, the dot product of these vectors is

$$
\overrightarrow{F L} \cdot \overrightarrow{G E}=1 \cdot(-1)+2 \cdot 2=3
$$

Let $\alpha:=\measuredangle M N E$. The above dot product can be calculated as

$$
3=\overrightarrow{F L} \cdot \overrightarrow{G E}=F L \cdot G E \cdot \cos \alpha=5 \cos \alpha, \quad \text { that is, } \quad \cos \alpha=\frac{3}{5}
$$

Let $\ell:=M N / 5$. Since $\triangle N E M$ is a right triangle,

$$
\frac{3}{5}=\cos \alpha=\frac{E N}{M N}=\frac{E N}{5 \ell} \text { and } \frac{4}{5}=\sin \alpha=\frac{E M}{M N}=\frac{E M}{5 \ell},
$$

so $E N=3 \ell$ and $E M=4 \ell$. We calculate next $F L$ in terms of ℓ.
Since angles opposite by the vertex have the same measure it follows that the triangles
$\triangle N E M, \triangle N F O, \triangle P G O, \triangle P H Q, \triangle R I Q, \triangle R J S, \triangle T K T$ and $\triangle T L M$
are equal. In particular, the equality $\triangle N E M=\triangle T L M$ implies $L M=E M=4 \ell$ and the equality $\triangle N E M=\triangle N F O$ implies $F N=E N=3 \ell$. Therefore

$$
F L=F N+N M+M L=3 \ell+5 \ell+4 \ell=12 \ell .
$$

Let us compute now the value of ℓ^{2}. Let \mathcal{K} denote the shaded octagon in the figure and let \mathcal{Q} be the square whose vertices are F, H, J y L. Then,

$$
\begin{gathered}
100=\operatorname{area}(\mathcal{K}) \\
=\operatorname{area}(\mathcal{Q})-[\operatorname{area}(\triangle N F O)+\operatorname{area}(\triangle P H Q)+\operatorname{area}(\triangle S J R)+\operatorname{area}(\triangle T L M)] \\
=\operatorname{area}(\mathcal{Q})-4 \cdot \operatorname{area}(\triangle N E M)=F L^{2}-4 \cdot\left(\frac{E N \cdot E M}{2}\right) \\
=(12 \ell)^{2}-2 \cdot 3 \ell \cdot 4 \ell=144 \ell^{2}-24 \ell^{2}=120 \ell^{2},
\end{gathered}
$$

hence $\ell^{2}=5 / 6 \mathrm{~cm}^{2}$. Therefore,

$$
F L^{2}=\operatorname{area}(\mathcal{Q})=144 \ell^{2}=120
$$

Finally, to compute the area of the square \mathcal{C} whose vertices are A, B, C and D we notice that área $(\mathcal{C})=A B^{2}$ and

$$
A F=\frac{2 \cdot A B}{3}, \quad A L=\frac{A D}{3}=\frac{A B}{3} .
$$

Hence,

$$
\begin{gathered}
120=F L^{2}=A F^{2}+A L^{2}=\frac{5}{9} \cdot A B^{2} \text { and } \\
\text { area }(\mathcal{C})=A B^{2}=\frac{120 \cdot 9}{5}=216 \mathrm{~cm}^{2} .
\end{gathered}
$$

Comment. Notice that the lengths of the sides of the octagon \mathcal{K} coincide, but this is not so with the measures of its angles. Thus, \mathcal{K} is not a regular octagon!

Second solution. Let $x:=A B$ be the length of the sides of the largest square and let $y:=E K$ be the length of the sides of the smallest squares. Applying Pythagoras theorem in the triangle $\triangle E A K$ we have

$$
\begin{equation*}
y^{2}=E K^{2}=E A^{2}+A K^{2}=\left(\frac{x}{3}\right)^{2}+\left(\frac{2 x}{3}\right)^{2}=\frac{5 x^{2}}{9} . \tag{1}
\end{equation*}
$$

Let us denote, as in the figure, $\beta:=\measuredangle L K T$ and $\gamma:=\measuredangle M T L$. By the symmetry, $K T=L T$, so $\triangle K T L$ is an isosceles triangle. Thus

$$
\gamma=\measuredangle M T L=\pi-\measuredangle K T L=\measuredangle L K T+\measuredangle T L K=2 \measuredangle L K T=2 \beta
$$

Let us compute next the sinus and cosine of γ. Note first that

$$
\begin{gathered}
\tan \beta=\frac{A E}{A K}=\frac{1}{2} \text { and } \\
\sin \gamma=\sin 2 \beta=2 \sin \beta \cos \beta=\frac{2 \sin \beta \cos \beta}{\cos ^{2} \beta+\sin ^{2} \beta}=\frac{2 \tan \beta}{1+\tan ^{2} \beta}=\frac{1}{1+\frac{1}{4}}=\frac{4}{5} .
\end{gathered}
$$

In addition,

$$
\cos \gamma=\cos 2 \beta=\cos ^{2} \beta-\sin ^{2} \beta=\frac{\cos ^{2} \beta-\sin ^{2} \beta}{\cos ^{2} \beta+\sin ^{2} \beta}=\frac{1-\tan ^{2} \beta}{1+\tan ^{2} \beta}=\frac{1-\frac{1}{4}}{1+\frac{1}{4}}=\frac{3}{5} .
$$

Let us denote $h:=M T$. Then,

$$
\begin{equation*}
M L=M T \cdot \sin \gamma=\frac{4 h}{5} \text { and } L T=M T \cdot \cos \gamma=\frac{3 h}{5} . \tag{2}
\end{equation*}
$$

Therefore,

$$
y=E K=F L=F N+N M+M L=L T+M T+M L=\frac{3 h}{5}+h+\frac{4 h}{5}=\frac{12 h}{5},
$$

that is, $h=\frac{5 y}{12}$ and, using (2),

$$
M L=\frac{4 h}{5}=\frac{y}{3} \text { and } L T=\frac{3 h}{5}=\frac{y}{4}, \quad \text { and so } \text { area }(\triangle T L M)=\frac{M L \cdot L T}{2}=\frac{y^{2}}{24}
$$

As in the first solution, let \mathcal{K} be the shaded octagon in the figure and let \mathcal{Q} be the square whose vertices are F, H, J and L. Then, by (1),
$100=\operatorname{area}(\mathcal{K})=\operatorname{area}(\mathcal{Q})-[\operatorname{area}(\triangle N F O)+\operatorname{area}(\triangle P H Q)+\operatorname{area}(\triangle S J R)+\operatorname{area}(\triangle T L M)]$, that is,

$$
100=y^{2}-\frac{4 y^{2}}{24}=\frac{5 y^{2}}{6}=\frac{5}{6} \cdot \frac{5 x^{2}}{9}=\frac{25 x^{2}}{54}
$$

and the area of the largest square \mathcal{C} is

$$
\text { area }(\mathcal{C})=x^{2}=4 \cdot 54=216 \mathrm{~cm}^{2}
$$

Problem 2

The rectangle in the figure contains six equal squares arranged as indicated. Determine the side of any of these squares.

Solution. We present two solutions of this problem. We denote ℓ the length of the side of each one of the squares occurring in the statement.

First solution. With the notations in the figure let r_{1} be the line parallel to the horizontal sides of the rectangle in the statement and passing through the point A. Let r_{2} be the line orthogonal to r_{1} passing through F, and let r_{3} be the parallel to r_{1} passing through E. Let us define $B:=r_{1} \cap r_{2}$ and $D:=r_{2} \cap r_{3}$. Note that

$$
\frac{\pi}{2}-\measuredangle B F A=\frac{\pi}{2}-\measuredangle D E F, \text { so } \measuredangle B F A=\measuredangle D E F:=\alpha
$$

Since $\triangle A B F$ is a right triangle we have

$$
\beta=\measuredangle F A B=\frac{\pi}{2}-\measuredangle B F A=\frac{\pi}{2}-\alpha .
$$

Thus, focussing in the triangle $\triangle A B F$ we get

$$
\begin{equation*}
\sin \alpha=\frac{A B}{A F}=\frac{A B}{3 \ell}, \text { that is, } A B=3 \ell \sin \alpha . \tag{3}
\end{equation*}
$$

On the other hand $\triangle E D F$ is a right triangle too, so

$$
\begin{equation*}
\cos \alpha=\frac{D E}{E F}=\frac{B C}{\ell}, \text { that is, } B C=\ell \cos \alpha . \tag{4}
\end{equation*}
$$

Adding the equalities (3) y (4) it follows

$$
\begin{equation*}
11=A B+B C=A B+D E=3 \ell \sin \alpha+\ell \cos \alpha \tag{5}
\end{equation*}
$$

Denote G, I and J the vertices of the small squares as in the figure above. Let r_{4} be the line parallel to r_{1} passing through I and let r_{5} be the line orthogonal to r_{4} passing through G. Denote $H:=r_{4} \cap r_{5}$ and note that $\measuredangle H G I=\alpha$ since the line $\ell_{G H}$ passing through G and H is parallel to the line $\ell_{D F}$ passing through D and F and the line $\ell_{G I}$ passing through G and I is parallel to the line $\ell_{A F}$ passing through A and F. Thus, since $\triangle G H I$ is a right triangle,

$$
\begin{equation*}
\cos \alpha=\frac{G H}{G I}=\frac{G H}{2 \ell}, \text { that is, } G H=2 \ell \cos \alpha . \tag{6}
\end{equation*}
$$

On the other hand, let r_{6} be the line orthogonal to the horizontal sides of the rectangle in the statement passing through J and let $L:=r_{6} \cap r_{4}$. We will see in the second solution that L and H coincide, but right now we do not know this is so. This is why we do not draw the point L. In the right triangle $\triangle I L J$ we have

$$
\begin{equation*}
\sin \alpha=\frac{L J}{I J}=\frac{\operatorname{dist}\left(J, r_{5}\right)}{3 \ell}, \text { that is, } \quad \operatorname{dist}\left(J, r_{5}\right)=3 \ell \sin \alpha . \tag{7}
\end{equation*}
$$

From equalities (6) y (7) it follows

$$
\begin{equation*}
13=\operatorname{dist}\left(J, r_{4}\right)+\operatorname{dist}\left(G, r_{4}\right)=3 \ell \sin \alpha+G H=3 \ell \sin \alpha+2 \ell \cos \alpha . \tag{8}
\end{equation*}
$$

Thus, using (5) and (8) we get

$$
\begin{equation*}
11=\ell(3 \sin \alpha+\cos \alpha) \text { and } 13=\ell(3 \sin \alpha+2 \cos \alpha) . \tag{9}
\end{equation*}
$$

Substracting both equalities, $2=\ell \cos \alpha$, thus $11=3 \ell \sin \alpha+2$, that is, $3=\ell \sin \alpha$. Finally,

$$
1=\cos ^{2} \alpha+\sin ^{2} \alpha=\frac{4+9}{\ell^{2}}=\frac{13}{\ell^{2}}, \text { thus } \ell=\sqrt{13} .
$$

Second solution. We denote ℓ the length of the side of each one of the squares occurring in the statement but, to avoid confusion, we introduce new notations, independent of the ones employed in the first solution.

The triangle in the lower right corner is a right triangle, so $\alpha+\beta=\pi / 2$. In addition we have $\gamma=\beta=\pi / 2-\alpha$ because the measures of the angles formed by the intersections of two parallel lines by a third one coincide. Let S be the intersection point of the line joining B and C with the line orthogonal to this last passing through the point P. Note that

$$
\measuredangle S R P+\measuredangle P R Z+\measuredangle Z R B=\measuredangle S R B=\pi .
$$

Thus $u:=\measuredangle P R Z$ satisfies $\measuredangle S R P+u+\alpha=\pi$, and so

$$
\frac{11}{P R}=\frac{P S}{P R}=\sin \measuredangle S R P=\sin (\pi-u-\alpha)=\sin (u+\alpha)
$$

Let us compute $P R$ in terms of ℓ. As $P Z=3 \ell$ and $Z R=\ell$, by Pythagoras Theorem it follows,

$$
P R=\sqrt{P Z^{2}+Z R^{2}}=\sqrt{10 \ell^{2}}=\sqrt{10} \ell,
$$

which implies

$$
\begin{equation*}
\sin (u+\alpha)=\frac{11}{P R}=\frac{11}{\sqrt{10} \ell} . \tag{10}
\end{equation*}
$$

Since $\triangle E T Q$ is a right triangle with $E T=2 \ell$ and $T Q=3 \ell$ we get

$$
\begin{equation*}
E Q=\sqrt{E T^{2}+T Q^{2}}=\sqrt{13} \ell \text { and so, } \sin \measuredangle B Q E=\frac{\operatorname{dist}(A B, C D)}{E Q}=\frac{13}{\sqrt{13} \ell} . \tag{11}
\end{equation*}
$$

Let $v:=\measuredangle T Q E$. Then

$$
\measuredangle B Q E=\measuredangle B Q T+\measuredangle T Q E=\gamma+v=\pi / 2-\alpha+v
$$

and the equality (11) can be rewritten

$$
\begin{equation*}
\cos (v-\alpha)=\cos (\alpha-v)=\sin (\pi / 2-\alpha+v)=\sin \measuredangle B Q E=\frac{13}{\sqrt{13} \ell} \tag{12}
\end{equation*}
$$

On the other hand,

$$
\sin u=\frac{P Z}{P R}=\frac{3 \ell}{\sqrt{10} \ell}=\frac{3}{\sqrt{10}}, \quad \text { so } \quad \cos u=\frac{1}{\sqrt{10}},
$$

whereas

$$
\sin v=\frac{E T}{E Q}=\frac{2 \ell}{\sqrt{13 \ell}}=\frac{2}{\sqrt{13}}, \text { which implies } \cos v=\frac{3}{\sqrt{13}} .
$$

Equalities (10) y 12 are written now as

$$
\begin{aligned}
& \frac{11}{\sqrt{10} \ell}=\sin (u+\alpha)=\sin u \cos \alpha+\cos u \sin \alpha=\frac{1}{\sqrt{10}} \cdot(3 \cos \alpha+\sin \alpha) \\
& \frac{13}{\sqrt{13} \ell}=\cos (v-\alpha)=\cos v \cos \alpha+\sin v \sin \alpha=\frac{1}{\sqrt{13}} \cdot(3 \cos \alpha+2 \sin \alpha)
\end{aligned}
$$

Therefore,

$$
11=\ell(3 \cos \alpha+\sin \alpha) \text { and } 13=\ell(3 \cos \alpha+2 \sin \alpha) .
$$

Substracting both equalities, $2=\ell \sin \alpha$, thus $11=3 \ell \cos \alpha+2$, that is, $3=\ell \cos \alpha$. Finally,

$$
1=\cos ^{2} \alpha+\sin ^{2} \alpha=\frac{9+4}{\ell^{2}}=\frac{13}{\ell^{2}} \text { thus } \ell=\sqrt{13}
$$

Comment. If the reader takes square and bevel, he shall verify that, at least graphically, it seems clear that the lines $\ell_{E Q}$ and $\ell_{A B}$ passing through E and Q and through A and B, respectively, are orthogonal. We have been unable to prove this fact a fortiori, although it follows easily once the length $\ell=\sqrt{13}$ is known. Indeed,

$$
\sin \measuredangle B Q E=\frac{13}{\sqrt{13} \ell}=1, \text { hence } \measuredangle B Q E=\frac{\pi}{2}, \quad \text { and so } \ell_{E Q} \perp \ell_{A B} \text {. }
$$

Acknowledgements

Thanks to Prof. Francisco Baena and Prof. Braulio de Diego coauthors of a book [1] collecting such 'Oposiciones" problems, for giving us permission to use and translate these two problems.

First author supported by Spanish PID2021-122752NB-I00. Second author supported by Spanish ID2020-113192GB-I00 both from the Spanish MICINN.

References

[1] José Manuel Gamboa, Francisco Baena, Braulio de Diego. Problemas de Oposiciones. Matemáticas. Tomo 10. Editorial Deimos. (2021) ISBN:= 978-84-86379-98-8

