Problem 1

Consider parallelogram $ABCD$, $|AB| \neq |BC|$. Let E be the intersection of the perpendicular to the diagonal AC dropped from the point D with the line BC and let F be the foot of the perpendicular from the point B to the line DE. Assuming that the lines CF and AE perpendicular, determine the angle ACB.

![Figure 1 – Parallelogram](image)
Problem 2
Consider a triangle \(ABC \) and its circumscribed circle \(k \). On the circle choose an arbitrary point \(P \) and inside the triangle select an arbitrary point \(G \). Consider circles \(GAB, GBC, GCA \). Denoting \(P_{AB}, P_{BC}, P_{CA} \) the inverse images of the \(P \) with respect to the circles, prove or answer following statements:

a) Points \(P_{AB}, P_{BC}, P_{CA} \) and \(G \) lie on a circle \(C \).

b) As \(P \) moves along the circle \(k \), the centre of the circle \(C \) moves along a line.

c) Determine in the triangle a point \(G = G_L \) in such a way that the points \(P_{AB}, P_{BC}, P_{CA} \) and \(G_L \) are always collinear (we consider a line as a special case of a circle).

Hint: Apply the Simson-Wallace theorem.

Problem 3
On a circle \(k \) are arbitrarily selected points \(A, B, C, D \). Denote the orthocenter of the triangle \(ABC \) as \(H_D \) and analogically introduce the orthocenters \(H_A, H_B, H_C \). Prove that the orthocenters lie on a circle with its radius equal to the radius of the circle \(k \).