PROBLEM CORNER

Provided by Daniela Ferrarello, Maria Flavia Mammana, Mario Pennisi, Eugenia Taranto
University of Catania, Italy
E-mail: mariaflavia.mammana@unict.it

Let \(Q \) be a convex quadrilateral with vertices A, B, C, D.

We call edges of \(Q \) the four sides and the two diagonals, \(AB, BC, CD, DA, AC, BD \).

Problem 1

Let \(M_1, M_2, M_3, M_4, M_5, M_6 \) be the midpoints of the edges \(AB, BC, CD, DA, AC, BD \).

Prove that the segments \(M_1M_3, M_2M_4, M_5M_6 \) are concurrent in a point G that bisects them all.

SOLUTION

In the triangle ABC, the segment \(M_1M_2 \) joins the midpoints of the edges \(AB \) and \(BC \), then \(M_1M_2 \) is parallel to \(AC \) and \(M_1M_2 = \frac{1}{2} AC \). Analogously, the segment \(M_3M_4 \) is parallel to
AC and $M_3M_4 = \frac{1}{2} AC$. Therefore, $M_1M_2M_3M_4$ is a parallelogram. The common point G of its diagonals bisects both of them, M_1M_3 and M_2M_4.

![Figure 3](image)

Figure 3. Q and the parallelogram $M_1M_2M_3M_4$

Let us consider different cases on Q.

Case 1. Q does not have any pairs of opposite parallel sides.

In the triangle ABC, the segment M_1M_5 joins the midpoints of the edges AB and AC, then M_1M_5 is parallel to BC and $M_1M_5 = \frac{1}{2} BC$. Analogously, the segment M_3M_6 is parallel to BC and $M_3M_6 = \frac{1}{2} BC$. Therefore, $M_1M_5M_3M_6$ is a parallelogram. Its diagonals bisect each other and since G is the midpoint of M_1M_3 then G is also the midpoint of M_5M_6.

Therefore, the segments M_1M_3, M_2M_4, M_5M_6 are concurrent in a point G that bisects them all.

Observe that also the quadrilateral $M_4M_5M_2M_6$ is a parallelogram.

![Figure 4](image)

Figure 4. Q in case 1

Case 2. Q has exactly one pair of opposite parallel sides.
Assume that AB is parallel to CD.

\(M_4M_5M_6 \) does not exist anymore (because the segments \(M_2M_6 \) and \(M_4M_5 \) are parallel to BC and the segments \(M_4M_6 \) and \(M_5M_2 \) are parallel to AB. Since AB is parallel to CD they are all parallel to each other, therefore the points \(M_2, M_5, M_4 \) and \(M_6 \) are collinear and \(M_5M_6 \) is contained in \(M_2M_4 \), but the parallelograms \(M_1M_2M_3M_4 \) and \(M_1M_5M_3M_6 \) still hold and, since they share the diagonal \(M_1M_3 \) then they all meet in a point \(G \) that bisects \(M_1M_3, M_2M_4, M_5M_6 \).

![Figure 5. \(Q \) in case 2](image)

Case 3. \(Q \) is a parallelogram.

If \(Q \) is a parallelogram then the parallelograms \(M_4M_5M_2M_6 \) and \(M_1M_5M_3M_6 \) do not exist anymore because \(M_5 \) and \(M_6 \) coincide with \(G \) (being \(G \) midpoint of the diagonals AC and BD).

Then the problem is solved also in this case.

![Figure 6. \(Q \) in case 3](image)

Problem 2

Let \(A', B', C' \) and \(D' \) be the centroids of the triangles BCD, ACD, ABD and ABC respectively.

Prove that

- the segments \(AA', BB', CC' \) and \(DD' \) are concurrent in \(G \);
- \(G \) divides each segment in two parts, the one containing the vertex twice the other one.
SOLUTION
Let M_2 be the midpoint of BC. The segment DM_2 is a median of the triangle BCD, therefore it contains the centroid A'. Let N be the midpoint of DA' and M_4 the midpoint of AD. The segment NM_4 joins the midpoints of the edges DA' and DA of the triangle DAA', then NM_4 is parallel to AA' and $AA' = 2 \ NM_4$.

Let G be the common point of AA' and M_2M_4. Let us prove that G is the midpoint of M_2M_4. In fact, the segment GA' is parallel to NM_4 and passes through the midpoint A' of the edge NM_2 of the triangle NM_2M_4, then G is the midpoint of M_2M_4. Moreover it is $NM_4 = 2GA'$, and then $AA' = 2NM_4 = 4GA'$ and $AG = 3GA'$.

Therefore G lies on the segment AA' and it is such that $AG = 3GA'$; the same holds for the segments BB', CC', DD' and it is $BG = 3GB'$, $CG = 3GC'$, $DG = 3GD'$ (in the proof you should consider the segments M_1M_3, M_2M_4 and M_1M_3 respectively). Note that the point G bisects the two segments M_1M_3, M_2M_4 and therefore is the same point G as in Problem 1. This point is known as centroid of a quadrilateral.