
Recursive Computation of Inverses of Confluent

Vandermonde Matrices

Shui-Hung Hou

mahoush@polyu.edu.hk

Department of Applied Mathematics

Hong Kong Polytechnic University, Hong Kong

Edwin Hou

hou@njit.edu

Department of Electrical and Computer Engineering

New Jersey Institute of Technology, USA

Abstract

A novel and simple recursive algorithm for inverting Vandermonde matrix and its
confluent type is presented. The algorithm proposed here is suitable for both hand and
machine computation. Examples are included to illustrate the proposed algorithm.

The Electronic Journal of Mathematics and Technology, Volume 1, Issue 1, ISSN 1933-2823

1 Introduction

Vandermonde matrices appear in many applications, such as polynomial interpolation [4, 13],

digital signal processing [2], and control theory [8]. An interesting review may be found in [9].

As far as the inverse of the Vandermonde matrix V and its confluent type is concerned,

a number of explicit formulas and computational schemes for the entries of V −1 have been

given in [3, 10, 11, 12, 14]. However, an explicit recursive formula for the inversion of confluent

Vandermonde matrices seems unavailable in the mathematical literature, and in linear systems

as well as linear algebra textbooks. Recently, a recursive algorithm for inverting Vandermonde

matrix as well as its confluent form has been reported by Hou [7]. The proposed algorithm is

suitable for both numerical as well as symbolic computation. The key theory of the inversion

procedure is based on the Leverrier-Faddeev method (see [1, 5, 6]), and the derivation of the

algorithm is a bit intricate and lengthy. It is the purpose of this paper to present a new yet

simple proof of Hou’s recursive algorithm, in a way more readily accessible for use in classroom.

The confluent Vandermonde matrix V related to the pairwise distinct zeros λ1, λ2, · · · , λr

of the polynomial

p(s) = (s− λ1)
n1(s− λ2)

n2 · · · (s− λr)
nr

with n1 + n2 + · · ·+ nr = n, is known to be

V = [V1V2 · · ·Vr] , (1)

where the block matrix Vk = V (λk, nk) is of order n × nk, having elements V (λk, nk)ij =(
i−1
j−1

)
λi−j

k for i ≥ j and zero otherwise (k = 1, 2, . . . , r; i = 1, 2, . . . , n; j = 1, 2, . . . , nk). It is

well known that the determinant of V is given by

det V =
∏

1≤i<j≤r

(λi − λj)
ninj .

λ1, λ2, . . . , λr being pairwise distinct, it follows that V is invertible.

In the case the zeros of p(s) are simple (that is, r = n and n1 = · · · = nr = 1), we have the

usual Vandermonde matrix, namely,

V =


1 1 · · · 1

λ1 λ2 · · · λn

...
...

...

λn−1
1 λn−1

2 · · · λn−1
n

 .

More examples can be found in Section 5.

13

The Electronic Journal of Mathematics and Technology, Volume 1, Issue 1, ISSN 1933-2823

In the remainder of the paper it will be shown that the inverse of the confluent Vandermonde

matrix V = [V1(λ1, n1)V2(λ2, n2) · · ·Vr(λr, nr)] in (1) has the form

V −1 =


W1(λ1, n1)

W2(λ2, n2)
...

Wr(λr, nr)

 , (2)

where each block matrix Wk(λk, nk) is of order nk × n, and may be computed by means of a

recursive procedure.

2 Preliminaries and notations

Let n be a given positive integer. We denote the n× n identity matrx by In, and let ei be the

i-th column vector in In, so that In = [e1, . . . , en].

Associated with the polynomial

p(s) = (s− λ1)
n1 · · · (s− λr)

nr

= sn + a1s
n−1 + a2s

n−2 + · · ·+ an

there is the n× n companion matrix

C =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−an −an−1 −an−2 . . . −a1

 .

It is clear that

Ce1 = −anen,

Ce2 = −an−1en + e1,

Ce3 = −an−2en + e2,

· · ·
Cen = −a1en + en−1,

and so
0 = Ce1 + anen,

e1 = Ce2 + an−1en,

e2 = Ce3 + an−2en,

· · ·
en−1 = Cen + a1en.

(3)

14

The Electronic Journal of Mathematics and Technology, Volume 1, Issue 1, ISSN 1933-2823

Also associated with λ1, . . . , λr, there is the block diagonal matrix

J = diag(J1, . . . , Jr),

where

Jk = J(λk, nk) =



λk 1 0 · · · 0

0 λk 1
...

0
. 0

... λk 1

0 · · · 0 0 λk


is the nk × nk Jordan block with eigenvalue λk. It is well known that the companion matrix

C and the Jordan matrix J are related through the confluent Vandermonde matrix V by

V −1CV = J . As a result, we have

V −1C = JV −1. (4)

3 Main results

Based on relations (3) and (4) we now proceed to derive the main results of the paper.

Premultiplying both sides of each equation in (3) by V −1 and making use of (4) give

0 = JV −1e1 + anV
−1en,

V −1e1 = JV −1e2 + an−1V
−1en,

V −1e2 = JV −1e3 + an−2V
−1en,

· · ·

V −1en−1 = JV −1en + a1V
−1en.

(5)

Letting

hk = V −1en−k+1, k = 1, . . . , n,

we have, of course,

V −1 = [hn,hn−1, . . . ,h1].

Also we can rewrite (5) in terms of h1, · · · ,hn as

0 = Jhn + anh1,

hn = Jhn−1 + an−1h1,

· · ·
h3 = Jh2 + a2h1,

h2 = Jh1 + a1h1.

(6)

15

The Electronic Journal of Mathematics and Technology, Volume 1, Issue 1, ISSN 1933-2823

J = diag(J1, . . . , Jr) being block diagonal, we may partition the vector hj accordingly in

the form

hj =

 h
(1)
j
...

h
(r)
j

 ,

where h
(k)
j is of size nk × 1 (k = 1, . . . , r; j = 1, . . . , n). It is easy to see that the block matrix

Wk in equation (2) is given by

Wk =
[
h(k)

n ,h
(k)
n−1, . . . ,h

(k)
1

]
.

Moreover, in view of equation (6) we have

0 = Jkh
(k)
n + anh

(k)
1 ,

h
(k)
n = Jkh

(k)
n−1 + an−1h

(k)
1 ,

· · ·
h

(k)
3 = Jkh

(k)
2 + a2h

(k)
1 ,

h
(k)
2 = Jkh

(k)
1 + a1h

(k)
1 .

(7)

Thus, in order to find the inverse V −1, it is necessary that the starting vector h
(k)
1 be first

specified, and the vectors h
(k)
2 ,h

(k)
3 , . . . ,h

(k)
n are then computed in succession in accordance with

the recursive relations (7). This requisite starting vector h
(k)
1 is provided in the next lemma.

Lemma 1 Let there be given the partial fraction expansion of

1

p(s)
=

r∑
k=1

(
K

(k)
1

(s− λk)
+

K
(k)
2

(s− λk)2
+ · · ·+ K

(k)
nk

(s− λk)nk

)
.

Then for k = 1, . . . , r,

h
(k)
1 = [K

(k)
1 , . . . , K(k)

nk
]T .

Proof Let f(t) = L−1[1/p(s)] be the inverse Laplace transform of 1/p(s). Then

f(t) = L−1

[
r∑

k=1

(
K

(k)
1

s− λk

+ · · ·+
K

(k)
nk−1

(s− λk)nk−1
+

K
(k)
nk

(s− λk)nk

)]

=
r∑

k=1

(
K

(k)
1 etλk + · · ·+ K

(k)
nk−1

tnk−2etλk

(nk − 2)!
+ K(k)

nk

tnk−1etλk

(nk − 1)!

)
.

Succesive differentiation of f(t) at t = 0 gives[
f(0), f ′(0), . . . , f (n−1)(0)

]T
= V

[
K

(1)
1 , . . . , K(1)

n1
, . . . , K

(r)
1 , . . . , K(r)

nr

]T
,

16

The Electronic Journal of Mathematics and Technology, Volume 1, Issue 1, ISSN 1933-2823

and so

V −1
[
f(0), f ′(0), . . . , f (n−1)(0)

]T
=
[
K

(1)
1 , . . . , K(1)

n1
, . . . , K

(r)
1 , . . . , K(r)

nr

]T
.

If we can show that [
f(0), f ′(0), . . . , f (n−1)(0)

]T
= en,

then

h1 = V −1en

=
[
K

(1)
1 , . . . , K(1)

n1
, . . . , K

(r)
1 , . . . , K(r)

nr

]T
,

and whence

h
(k)
1 =

[
K

(k)
1 , . . . , K(k)

nk

]T
, k = 1, . . . , r,

as claimed.

To this end, we expand f(t) at t = 0 in powers of t to get

f(t) =
∞∑

k=0

f (k)(0)
tk

k!
=

∞∑
k=0

fk
tk

k!
,

so that

1 = p(s) · L[f(t)] = p(s) ·
∞∑

k=0

fk

sk+1
.

Comparing the coefficients of sn−1, . . . , s0 on both sides of the last equation gives

f0 = 0,

f1 + a1f0 = 0,
...

fn−2 + a1fn−3 + · · ·+ an−2f0 = 0,

fn−1 + a1fn−2 + · · ·+ an−1f0 = 1,

which clearly implies

[f0, f1, . . . , fn−2, fn−1]
T = [0, 0, . . . , 0, 1]T = en.

This completes the proof of the lemma.

We are ready to state our main result.

17

The Electronic Journal of Mathematics and Technology, Volume 1, Issue 1, ISSN 1933-2823

Theorem 1 Let λ1, λ2, . . . , λr be pairwise distinct zeros of the polynomial

p(s) = (s− λ1)
n1 · · · (s− λr)

nr

= sn + a1s
n−1 + · · ·+ an

given together with the partial fraction expansion of

1

p(s)
=

r∑
k=1

(
K

(k)
nk

(s− λk)nk
+

K
(k)
nk−1

(s− λk)nk−1
+ · · ·+ K

(k)
1

s− λk

)
.

For each k ∈ {1, 2, . . . , r}, compute recursively nk-dimensional vectors

h
(k)
1 ,h

(k)
2 , . . . ,h(k)

n

by means of the following scheme:

h
(k)
1 =

[
K

(k)
1 , . . . , K(k)

nk

]T
,

h
(k)
j = Jkh

(k)
j−1 + aj−1h

(k)
j−1, j = 2, . . . , n

terminating at

0 = Jkh
(k)
n + anh

(k)
n .

Then the inverse of the confluent Vandermonde matrix

V = [V (λ1, n1)V (λ2, n2) · · ·V (λr, nr)]

is given by

V −1 =


W (λ1, n1)

W (λ2, n2)
...

W (λr, nr)

 ,

where for k = 1, . . . , r the block matrix Wk = W (λk, nk) is of order nk × n and

Wk =
[
h(k)

n ,h
(k)
n−1, . . . ,h

(k)
1

]
.

It is noted that in the above scheme the vectors, h
(k)
j , j = 2, . . . , r, are to be calculated

through matrix multiplication by Jk. We now recast the matrix computation involved, in a

way to make it more suitable for hand computation as well.

Let e(nk) be the nk-th column vector of the nk × nk identity matrix Ink
. We write Jk =

λkInk
+ Nk, so that Nk = Jk − λkInk

= J(0, nk) is a nilpotent matrix of order nk, i.e. Nnk
k = 0

but Nnk−1
k 6= 0.

18

The Electronic Journal of Mathematics and Technology, Volume 1, Issue 1, ISSN 1933-2823

Moreover, if the polynomial h
(k)
j (s) is denoted by

h
(k)
j (s) =

[
snk−1, . . . , s, 1

]
h

(k)
j ,

then we have

h
(k)
j = h

(k)
j (s)e(nk)

∣∣∣
s=Nk

.

Based on this representation and the nilpotency of the matrix Nk, we are led to Hou’s

recursive algorithm (see [7]) for inverting confluent Vandermonde matrices, which is given in

the next section.

4 Algorithm ICVM

Algorithm ICVM: (Inversion of Confluent Vandermonde Matrices)

Let λ1, λ2, . . . , λr be pairwise distinct zeros of the polynomial

p(s) = (s− λ1)
n1 · · · (s− λr)

nr

= sn + a1s
n−1 + · · ·+ an

given together with the partial fraction expansion of

1

p(s)
=

r∑
k=1

(
K

(k)
nk

(s− λk)nk
+

K
(k)
nk−1

(s− λk)nk−1
+ · · ·+ K

(k)
1

s− λk

)
.

For each k ∈ {1, 2, . . . , r}, compute recursively polynomials

h
(k)
1 (s), h

(k)
2 (s), . . . , h(k)

n (s)

all of degree at most nk − 1 by means of the following scheme:

h
(k)
1 (s) = K(k)

nk
+ sK

(k)
nk−1 + · · ·+ snk−1K

(k)
1 ,

h
(k)
2 (s) = (λk + s)h

(k)
1 (s) + a1h

(k)
1 (s) mod snk ,

h
(k)
3 (s) = (λk + s)h

(k)
2 (s) + a2h

(k)
1 (s) mod snk ,

...

h(k)
n (s) = (λk + s)h

(k)
n−1(s) + an−1h

(k)
1 (s) mod snk ,

19

The Electronic Journal of Mathematics and Technology, Volume 1, Issue 1, ISSN 1933-2823

terminating at

0 = (λk + s)h(k)
n (s) + anh

(k)
1 (s) mod snk .

Obtain a block matrix Wk = W (λk, nk) of order nk × n via the equality[
snk−1 snk−2 · · · 1

]
W (λk, nk) =

[
h

(k)
n (s) h

(k)
n−1(s) · · · h

(k)
1 (s)

]
.

The inverse of the confluent Vandermonde matrix

V = [V (λ1, n1)V (λ2, n2) · · ·V (λr, nr)]

may then be written as

V −1 =


W (λ1, n1)

W (λ2, n2)
...

W (λr, nr)

 .

5 Illustrative example

Here, we present an example to illustrate the recursive algorithm ICVM presented above. Let

the confluent Vandermonde matrix V in (1) be given by

V =


1 0 0 1

λ1 1 0 λ2

λ2
1 2λ1 1 λ2

2

λ3
1 3λ2

1 3λ1 λ3
2

 =


1 0 0 1

−2 1 0 3

4 −4 1 9

−8 12 −6 27

 ,

for which λ1 = −2, n1 = 3, and λ2 = 3, n2 = 1. The coefficients of the polynomial p(s) =

(s + 2)3(s− 3) are given by a1 = 3, a2 = −6, a3 = −28, and a4 = −24. It is easy to determine

the partial fraction expansion of 1/p(s) to be

1

(s + 2)3(s− 3)
=

−1
5

(s + 2)3
+

−1
25

(s + 2)2
+

−1
125

s + 2
+

1
125

s− 3
.

Let us consider first the case λ1 = −2. Clearly

h1(s) = −1

5
− s

25
− s2

125
.

Then

h2(s) = (−2 + s)h1(s) + 3h1(s) mod s3

20

The Electronic Journal of Mathematics and Technology, Volume 1, Issue 1, ISSN 1933-2823

= −1

5
− 6s

25
− 6s2

125
,

h3(s) = (−2 + s)h2(s)− 6h1(s) mod s3

=
8

5
+

13s

25
− 12s2

125
,

h4(s) = (−2 + s)h3(s)− 28h1(s) mod s3

=
12

5
+

42s

25
+

117s2

125
.

As a check of computation, we verify that

(−2 + s)h4(s)− 24h1(s) mod s3 =
117s3

125
mod s3 = 0.

Thus it follows from
[

s2 s 1
]
W1 =

[
h4(s) h3(s) h2(s) h1(s)

]
that

W1 =


117
125

−12
125

−6
125

−1
125

42
25

13
25

−6
25

−1
25

12
5

8
5

−1
5

−1
5

 .

Similarly, for λ2 = 3 we find that

h1(s) =
1

125
,

h2(s) = (3 + s)h1(s) + 3h1(s) mod s =
6

125
,

h3(s) = (3 + s)h2(s)− 6h1(s) mod s =
12

125
,

h4(s) = (3 + s)h3(s)− 28h1(s) mod s =
8

125
.

and

(3 + s)h4(s)− 24h1(s) mod s = 3 · 8

125
− 24

125
= 0.

Then
[

1
]
W2 =

[
h4(s) h3(s) h2(s) h1(s)

]
gives

W2 =
[

8
125

12
125

6
125

1
125

]
.

Finally, we have

V −1 =

[
W1

W2

]
=



117
125

−12
125

−6
125

−1
125

42
25

13
25

−6
25

−1
25

12
5

8
5

−1
5

−1
5

8
125

12
125

6
125

1
125

 .

21

The Electronic Journal of Mathematics and Technology, Volume 1, Issue 1, ISSN 1933-2823

All numerical results given in the example above were computed using a MATLAB version

of the Algorithm ICVM. The input to the subroutine should be the eigenvalues and their

multiplicities. On output, the required inverse of the given confluent Vandermonde matrix will

appear. A listing of the subroutines used is provided in the Appendix.

6 Conclusions

A simple and new proof of the recursive algorithm ICVM for determining the inverses of con-

fluent Vandermonde matrices was presented. The proposed algorithm computes one block of

the inverse matrix at a time. Moreover, the simple recursive structure of the algorithm makes

it suitable and easy for hand and machine computation.

7 Acknowledgments

This research is supported by the Research Committee of The Hong Kong Polytechnic Univer-

sity.

References

[1] D. K. Faddeev and V. N. Faddeeva, Computational Methods of Linear Algebra, Free-

man, San Francisco, 1963.

[2] H. K. Garg, Digital Signal Processing Algorithms, CRC Press, 1998.

[3] F. A. Graybill, Matrices with Applications to Statistics, second ed., Wadsworth, Bel-

mont, Calif., 1983.

[4] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985.

[5] S. H. Hou, A Simple Proof of the Leverrier-Faddev Characteristic Polynomial Algorithm,

SIAM Review., 40:706-709, 1998.

[6] S. H. Hou, On Leverrier-Faddeev Algorithm, Proceedings of the Third Asian Technology

Conference in Mathematics, Yang et al (Eds.), Springer Verlag, 399-403, 1998.

[7] S. H. Hou, Inversion of Confluent Vandermonde Matrices, Computers and Mathematics

with Application, No. 43, (2002), 1539-1547.

[8] T. Kailath, Linear Systems, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1980.

22

The Electronic Journal of Mathematics and Technology, Volume 1, Issue 1, ISSN 1933-2823

[9] D. Kalman, The Generalized Vandermonde Matrix, Math. Mag., 57:15-21, 1984.

[10] A. Klinger, The Vandermonde Matrix, Amer. Math. Monthly, 74:571-574, 1967.

[11] D. E. Knuth, The Art of Computer Programming, second edition, Addison-Wesley, 1973.

[12] N. Macon and A. Spitzbart, Inverses of Vandermonde Matrices, Amer. Math. Monthly,

65:95-100, 1958.

[13] C. Pozrikidis, Numerical Computation in Science and Engineering, Oxford University

Press, 1998.

[14] J. F. Traub, Associated polynomials and uniform methods for the solution of linear

problems. SIAM Review, 8:277-301, 1966.

23

The Electronic Journal of Mathematics and Technology, Volume 1, Issue 1, ISSN 1933-2823

8 Appendix (Matlab program for Algorithm ICVM)

Algorithm ICVM was implemented using Matlab version 5.3. The implementation given below

consists of two subroutines cvander and icvm.

• cvander returns confluent Vandermonde matrix.

• icvm returns the inverse confluent Vandermonde matrix.

Both subroutines requires two input arguments, namely lambda and n:

• lambda is an array of pairwise distinct eigenvalues, [λ1, ..., λr].

• n is the array of the corresponding multiplicities of the eigenvalues, [n1, ..., nr].

The user should include the subroutines as individual files within a directory. A calling

program that specifies the appropriate input should also be provided. The code given below

are for reference and classroom use only. Note that the residue command is used to determine

the partial fraction expansion of 1/p(s). The poles obtained by residue may not be identical to

the original input eigenvalues, and this may cause the routine to fail.

------------------------- icvm.m -------------------------

function v = icvm(lambda, n)

% IVCM Inversion of Confluent Vandermonde Matrix

% v = ICVM(lambda, n) finds the inverse of a confluent

% Vandermonde matrix.

% lambda = eigenvalues (vector)

% n = multiplicity of the eigenvalues (vector)

% build vector of eigenvalues

ei = [];

for ii=1:length(n)

ei = [ei ,lambda(ii) * ones(1, n(ii))];

end

% x = coefficients of characteristic polynomial

x = poly(ei);

a = x(2: sum(n)+1);

% k = coefficients of the partial fraction expansion

[k p]= residue([1], x);

k = k(length(k):-1:1).’;

p = p(length(p):-1:1).’;

% residue arranges the coefficients of the partial fraction

% expansion in order of absolute magnitude of the poles.

% They are reordered according to the original lambda.

tk = [];

for ii=1:length(n)

24

http://www.radford.edu/scorwin/eJMT/Content/Papers/v1n1p2/cvander.m
http://www.radford.edu/scorwin/eJMT/Content/Papers/v1n1p2/icvm.m

The Electronic Journal of Mathematics and Technology, Volume 1, Issue 1, ISSN 1933-2823

for jj=1:length(p)

% poles calculated by residue are not identical to

% original lambda.

if abs(lambda(ii) - p(jj)) < 10^-5

tk = [tk , k(jj:jj+n(ii)-1)];

break

end

end

end

k = tk;

% calculate inverse Vandermonde matrix

cn = cumsum(n);

v = [];

s = 1;

for ii=1:length(n)

h = k(s:cn(ii));

h1 = h;

w = [];

for jj=1:sum(n)

w = [h(length(h):-1:1).’, w];

h = (lambda(ii) * h) + a(jj)* h1 + [0, h(1:length(h)-1)];

end

s = cn(ii)+1;

v = [v; w];

end

------------------------- cvander.m -------------------------

function v = cvander(lambda, n)

% CVANDER confluent Vandermonde matrix

% v = CVANDER(lambda, n) finds the confluent Vandermonde matrix.

% lambda = eigenvalves (vector)

% n = multiplicities of eigenvalues (vector)

v =[];

for kk=1:length(n)

w = [];

for ii=1:sum(n)

for jj=1:n(kk)

if (ii-jj < 0)

w(ii,jj) = 0;

else

x = prod(1:ii-1);

y = prod(1:jj-1);

z = prod(1:ii-jj);

w(ii,jj) = (x/(y*z))*lambda(kk)^(ii-jj);

end

end

end

v = [v, w];

end

25

The Electronic Journal of Mathematics and Technology, Volume 1, Issue 1, ISSN 1933-2823

The following is the output from MATLAB displaying the confluent Vandermonde ma-

trix (v) and its inverse (vi) with the following eigenvalues: (λ1, n1) = (−1, 3), (λ2, n2) =

(−2, 2), (λ3, n3) = (−3, 1). The results are checked to ensure v ∗ vi = vi ∗ v = I.

EDU>> v = cvander([-1 -2 -3],[3 2 1])

v =

1 0 0 1 0 1

-1 1 0 -2 1 -3

1 -2 1 4 -4 9

-1 3 -3 -8 12 -27

1 -4 6 16 -32 81

-1 5 -10 -32 80 -243

EDU>> vi = icvm([-1 -2 -3],[3 2 1])

vi =

16.5000 58.0000 83.1250 56.3750 17.8750 2.1250

-9.0000 -36.0000 -52.2500 -34.7500 -10.7500 -1.2500

6.0000 20.0000 25.5000 15.5000 4.5000 0.5000

-15.0000 -56.0000 -80.0000 -54.0000 -17.0000 -2.0000

-6.0000 -23.0000 -34.0000 -24.0000 -8.0000 -1.0000

-0.5000 -2.0000 -3.1250 -2.3750 -0.8750 -0.1250

EDU>> v * vi

ans =

1.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000

0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

-0.0000 -0.0000 1.0000 -0.0000 -0.0000 -0.0000

0.0000 0.0000 0.0000 1.0000 0.0000 0.0000

-0.0000 -0.0000 -0.0000 -0.0000 1.0000 -0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

EDU>> vi * v

ans =

1.0000 0.0000 -0.0000 -0.0000 0.0000 0

0.0000 1.0000 0.0000 0.0000 -0.0000 0.0000

-0.0000 0.0000 1.0000 -0.0000 0.0000 -0.0000

-0.0000 0.0000 -0.0000 1.0000 0.0000 -0.0000

-0.0000 0.0000 -0.0000 -0.0000 1.0000 -0.0000

0.0000 -0.0000 0.0000 0.0000 -0.0000 1.0000

EDU>>

26

	Introduction
	Preliminaries and notations
	Main results
	Algorithm ICVM
	Illustrative example
	Conclusions
	Acknowledgments
	Appendix (Matlab program for Algorithm ICVM)

