
The Electronic Journal of Mathematics and Technology, Volume 1, Issue 1, ISSN 1933-2823

A Symbolic Approach to Teaching Geometry

Miroslaw Majewski
e-mail: mirek.majewski@mupad.com

College of Arts and Sciences
New York Institute of Technology

Abu Dhabi
United Arab Emirates

Abstract

Teaching geometry with a computer was always based on Dynamic
Geometry software, like Cabri, Cinderella or Geometers Sketchpad. Such
software allows interactive manipulation of geometric objects and geometric
constructions like those done with the help of ruler and compass. This
approach is very fruitful. However, it lacks a number of things. One of
them is limited ability of producing symbolic or numeric output.
In this paper we will show how we can use symbolic software for teaching

and experimenting in analytic as well as in synthetic geometry. In this paper
we will concentrate on two tools producing symbolic output� MuPAD and
Geometry Expressions. We will show what kind of geometry problems we
can solve with these tools and what are the bene�ts of this approach.

1 Introduction

For years we used a few computer programs that proved itself to be very e¤ective tools
for teaching elementary geometry. These are Cabri produced by CABRILOG in France,
Geometers Sketchpad produced by KCP Technologies in USA, and Cinderella developed by
two scientists Jürgen Richter-Gebert and Ulli Kortenkamp from ETH in Zürich. In this
paper for all these tools we use a common name� Dynamic Geometry software (in short
DG). The DG approach is very popular. We can �nd a number of other computer programs
with similar functionality. A general feature of all these programs is an ability to mimic
geometry constructions that we used to do in high school geometry classes, e.g. drawing a
segment or a line, drawing a point or a circle, �nd intersection points of two or more geometry
objects, etc. All elements drawn in such software are usually not attached to their locations
and we can drag them across the screen without breaking relations between objects. This
way we can experiment, observe some new facts, and draw conclusions. Figure 1 shows an
example developed in Geometers Sketchpad. The objective of this example is to show that
the circumcenter of a triangle is the center of the circle circumscribed on the triangle. The
numerical measurements shown on the �gure are not really a proof of that fact. However,

55

The Electronic Journal of Mathematics and Technology, Volume 1, Issue 1, ISSN 1933-2823

Figure 1: Example of a geometry construction in GSP

they are enough to suggest that fact is true and sometimes give a hint on how such fact can
be proved.
As we said before, the most important advantage of such software is its ability to mimic

simple constructions that we used to do with ruler and compass. Such software is not very
intelligent, whatever this means, and usually does not produce a result that goes beyond
real numbers. Therefore, numerical values representing distances between points cannot be
considered as proofs or even as accurate. In most of cases the real proof should be still done
by hand.
Although some of the DG programs may have very limited set of tools, these programs

can be used to visualize an incredibly vast spectrum of geometry problems. This makes them
favorite tools for undergraduate mathematics. In this group a program worth mentioning is
Cinderella. This is the software where we can deal also with some constructions from a non
Euclidean geometry, e.g. from hyperbolic or elliptic geometries.

2 Solving Geometry Problems with CAS

Computer Algebra Systems (in brief CAS), were never popular tools for teaching geometry.
The main reason is that all pictures in CAS programs are only static pictures and none of
the existing CAS provides interactivity like that in DG software. However, CAS give us
something that we do not have in DG software� the ability of using coordinates, equations
and getting outputs both in numeric and symbolic form. This is a very serious step forward
as we can produce symbolic formulae describing relations between geometry objects.

56

The Electronic Journal of Mathematics and Technology, Volume 1, Issue 1, ISSN 1933-2823

In CAS creating models of a geometric construction requires typing commands to create
geometry primitives, executing commands and �nally plotting all objects in a common pic-
ture. Below we show one of such examples. Note also, plotting any object in CAS requires
its equation with coe¢ cients given in a numeric form. Therefore, code of all plotted objects
cannot have symbolic values.

Example 1 Two circles and their common tangent lines

We will use MuPAD to create a scene with two given circles and their common tangent
lines. Let us suppose that our circles have centers in points (2,0) and (-3,0), and radii 1 and
2 respectively. Developing a plot with these two circles is very easy. Here is the code and
the obtained plot.

Circle1 := plot::Circle2d(1,[2,0]):
Circle2 := plot::Circle2d(2, [-3,0]):
plot(Circle1, Circle2)

­5 ­4 ­3 ­2 ­1 1 2 3

­2

­1

1

2

x

y

Obtaining the remaining parts of the plot is much harder. We expect that we will have
four tangent lines, two of them passing between circles and two passing outside.
In order to obtain these four tangent lines we will have to start with a general equation

of a line and then use the formula for the distance of a point to a line. This way we will
produce a system of equations with two or three variables. Solve such system and obtain
equations of all four lines. Below we show only one part of the solution.
In order to simplify our calculations we will use equation of a line in the slope-intercept

form y = mx+ b or mx� y+ b = 0. Therefore, the distance of a point (X;Y) from this line
will be given by the formula,

d =
jmX � Y + bjp

m2 + 1

A more convenient for us would be to use a relative distance formula where the absolute
value was removed (see [3]). This will allow us to consider each tangent line as a separate
case (cases d > 0 and d < 0).
Here is the MuPAD declaration of the distance formula,

distance := (m*x-y+b)/sqrt(m^2+1)

57

The Electronic Journal of Mathematics and Technology, Volume 1, Issue 1, ISSN 1933-2823

b� y +m � xp
m2 + 1

Knowing that the distance of a circle center to a tangent line is equal the radius of the
circle, we can de�ne two equations:

e1 := subs(distance, x=2, y=0)=1

b+ 2 �mp
m2 + 1

= 1

e2 := subs(distance, x=-3, y=0)=2

b� 3 �mp
m2 + 1

= 2

Finally, by solving the system of these two equations we will �ndm and b. By substituting
the obtained results into the equation of the line we will be able to produce a graph of the
tangent line. MuPAD calculations may follow like below.

solutions := solve([e1,e2], [m,b], VectorFormat=TRUE)(
�
p
6
12

7�
p
6

12

!)
m := solutions[1][1]:
b := solutions[1][2]:
line1 := plot::Function2d(m*x+b, x=-5..3):
plot(line1, Circle1, Circle2);
delete m, b

­5 ­4 ­3 ­2 ­1 1 2 3

­2

­1

1

2

x

y

Finally using di¤erent combinations of signs for the right value of equations e1 and e2,
i.e. +1, �2; �1,+2 and �1,�2 we will be able to obtain the three remaining tangent lines.
The plot will look like the one below.

58

The Electronic Journal of Mathematics and Technology, Volume 1, Issue 1, ISSN 1933-2823

­5 ­4 ­3 ­2 ­1 1 2 3

­4

­3

­2

­1

1

2

3

4

x

y

The obtained image can be modi�ed by changing colors of particular lines, �ll circles,
adding labels and a legend, etc. Finally, the whole process can be automatized by developing
a procedure that for two given circles will automatically produce all tangent lines or some
of them.
For a teacher trying to use a Computer Algebra System for teaching geometry there is

one important conclusion� most of geometry constructions can be developed in CAS, but
this task will require from a teacher a lot of preparations and perhaps developing templates
for each type of construction. However, the whole process of developing such graphs in a
CAS, in our case in MuPAD, has serious didactical advantages� it teaches a lot about the
whole process of �nding the right solution, in our case �nding the tangent lines. Students
must know the right formulae and properties of objects before they will be able to develop
geometry constructions in CAS.

3 A Brief Overview of Geometry Expressions

Geometry Expressions is a new tool that combines DG approach with features of a Computer
Algebra System. The software has an interface that allows creating constructions similar to
those known from Cabri or GSP, manual manipulation of geometry objects and, at the same
time, producing results in the form of a formula with symbolic coe¢ cients or in numeric
form. Geometry Expressions can be used in teaching both synthetic geometry where we
do not use a coordinate system as well as in analytic geometry where coordinates are vital
elements of solutions. Let us examine solution of the example with two circles and their
common tangent lines in Geometry Expressions.

Example 2 Two circles and their common tangent lines (revisited)

Before we will jump into solving anything with Geometry Expressions it is important to
introduce some of the Geometry Expressions tools that might be necessary for our example.
A more detailed information about Geometry Expressions tools and toolboxes can be found
in [1].

1. The selection tool, we use it to select objects, drag them on the screen, etc.

59

The Electronic Journal of Mathematics and Technology, Volume 1, Issue 1, ISSN 1933-2823

2. A tool to draw a circle

3. A tool to declare radius of a circle

4. A tool to declare coordinates of a point

5. A tool to draw a line

6. A tool to declare two objects as tangent

7. A tool to obtain an implicit equation of a line or curve

All Geometry Expressions tools are very intuitive and in order to use any of them we
have to select an object or objects on the screen, click the right tool and in some cases type
the required parameters. For instance, in order to declare a circle and a line as tangent we
have to click on the circle, press the [Ctrl] key, click on the line and then click the tangency
button.
Here is the sequence of steps required to produce a graph of two circles from our example

and their tangent lines.

1. Click on the circle tool, drag mouse pointer on the screen and then click the selection
tool.

2. Select the center of the circle, click the tool to declare coordinates of the point, and
type numbers �3; 0. Click again the selection tool.

3. Click somewhere on the circle line, click the tool to declare the radius of a circle and
type 2. Click back the selection tool.

4. Repeat steps 1, 2 and 3 to produce the second circle with center in (2; 0) and radius
equal to 1.

5. Use the line tool to draw four lines somewhere in the area where the tangent lines
should appear. The lines may not even touch any of the circles.

6. Select one of the lines and select one of the circles, click on the tool declaring two
objects as tangent. This will move the line in such a way that it will become tangent
to the circle.

7. Repeat step 6 for each pair of circles and lines. After this step each line should be
tangent to each circle.

8. Select a line and click the implicit equation tool. An implicit formula of the equation
will appear next to the line.

9. Repeat step 8 for each of the three remaining lines. The obtained graph may look like
the one shown below.

60

The Electronic Journal of Mathematics and Technology, Volume 1, Issue 1, ISSN 1933-2823

1 2 3 4 5 6­1­2­3­4­5

1

2

3

­1

­2

­3

D
A

B

C

⇒ ­1+3·X+4·Y=0

⇒ 1­3·X+4·Y=0

⇒ ­7+X+2· 2· 3·Y=0

⇒ 7­X+2· 2· 3·Y=0

(2,0)

2

1(­3,0)

Figure 2: Two circles and their common tangent lines in Geometry Expressions

By simple calculations we can easily prove that equations of tangent lines obtained in
MuPAD are exactly the same like those obtained in Geometry Expressions.
The above example shows how di¤erent is a solution of the problem in CAS and in

Geometry Expressions, and how di¤erent is philosophy of producing such solution. In CAS
we had to mimic all steps that we perform while solving the common tangent lines problem
by hand. In Geometry Expressions we had to draw our circles and lines, and apply to
them relations of tangency. We do not need to know a precise notion of tangency of two
objects or how to calculate a formula of the equation. We use the intelligence embedded
into the software to obtain these properties. We certainly lose something in the learning
process. This is the same what happens when we use any other highly intelligent software
for basic mathematical notions. For example, students are not much learning while applying
in MuPAD the solve command to a quadratic equation. In such case the solve command will
work like a black box and the way how the solution was obtained will be completely hidden.
The same situation occurs while producing equations of lines in Geometry Expressions.
Features of CAS and Geometry Expressions described here make them a bit inconvenient

while teaching low level courses. We have to �nd a good strategy of using these tools in
order to not lose anything from the learning process and bene�t at the same time from
features provided by the software. The situation changes to the complete opposite when
teaching mathematics on a more advanced level. Here the easy-to-apply elementary features
of the software will allow us to simplify the solving process and concentrate on producing a
solution.

61

The Electronic Journal of Mathematics and Technology, Volume 1, Issue 1, ISSN 1933-2823

4 Geometry Expressions and CAS

From the above example we can conclude that Geometry Expressions is a kind of CAS
with DG interface. Indeed we have here a computing engine able to solve simple equations,
transform formulae and a few other operations. The engine is not able to deal with more
complex mathematical operations like producing an integral or di¤erential, solving a di¤er-
ential equation or even simplify a more complex expression. However, the current engine is
strong enough for majority of elementary geometry constructions and basic measurements.
If we wish to get more we will have turn back to CAS.
The resemblance of Geometry Expressions to a CAS will be even more obvious if we

examine the internal process of solving a problem. Every time when we construct an object,
add declaration of a property, or a relation, Geometry Expressions creates a variable or
a command representing this step. This way a chain of commands is created. This is
almost exactly the same what happened when we created a solution for the two circles and
their common tangent lines problem in MuPAD. In Geometry Expressions users are also
responsible for creating particular variables and producing solutions in terms of variables
de�ned by them. For example, a formula for calculating area of a triangle can be represented
in terms of coordinates of vertices, in terms of lengths of sides of the triangle, or in other
combination of chosen terms. The �gure 3 shows how it looks in Geometry Expressions. We
have there four triangles. Each of the triangles was produced using the polygon tool. In
each case we declared the triangle using di¤erent parameters. In Geometry Expressions we
call them constraints (they are, in fact, declarations of values) or constructions (declarations
of relations). For example, for the top right triangle we declared as known three sides a, b,
and c. These parameters were used by Geometry Expressions to calculate the area of the
triangle.
The chain of declarations produced this way can be modi�ed in some situations. For

example, by removing from the picture a formula representing an early declared constraint
we remove it from the memory and in place of it we can add another constraints. However,
in the current version of Geometry Expressions we are not able to modify or rename con-
straints added by the program. We are also not able to see or edit the chain of declarations.
This makes sometimes interpretation of obtained solution a bit di¢ cult. For example, after
drawing a triangle ABC and asking Geometry Expressions to produce its area we obtain the
formula:

z0)
�����d0 � d1 � sin(��0 + �1)2

����
From the above formula we can conclude that d0 and d1 are lengths of sides of the triangle

and �0, �1 are angles in the triangle. However, we still do not know which sides and which
angles were used to calculate the result.

A combined functionality of a dynamic interface and ability to produce symbolic results
can be used in a vast spectrum of geometric explorations and experiments, both in synthetic
and analytic geometry. Here is a very interesting example of a theorem that usually requires
some calculations. In Geometry Expressions we get a proof of it almost without any e¤ort.

62

The Electronic Journal of Mathematics and Technology, Volume 1, Issue 1, ISSN 1933-2823

A

H

E

L

K
G

D

C

I

J

B

F

z3⇒
d·e·sin(theta)

2

z1⇒
a+b+c· a+b­c· a­b+c· ­a+b+c

4
z0⇒

d0·d1·sin ­θ0+θ1

2

z2⇒
x1·y0­x2·y0­x0·y1+x2·y1+x0·y2­x1·y2

2

c

x1,y1

a

d

x0,y0

b

e

x2,y2
theta

Figure 3: Di¤erent ways of choosing constraints in Geometry Expressions

Example 3 Two circles and tangent lines from centers

There are given two circles C1 and C2 with radii equal to r and R respectively, and d
is the distance between centers of both circles. Let us draw tangent lines to a circle from
the center of the other circle. Prove that the length of the chord obtained by connecting
points of intersection A, B of two tangent lines with a circle C1 is equal the length of the
chord obtained by connecting points of intersection A1, B1 of the two other tangent lines
and circle C2 (see �gure 4).
Drawing the example in Geometry Expressions and setting the appropriate constraints

is a very quick process and does not require any special skills or knowledge. A student needs
to know very basic properties of a circle and tangent lines. The �gure 4 shows what most of
undergraduate students will be able to do.
While changing lengths of radii, distance between circles we still are able to notice that

both chords are equal. This will be con�rmed by Geometry Expressions if we select each of
these chords and ask Geometry Expressions to calculate its length. In both cases we will
get the same result 2Rr

d
. For mathematical purists this is not a proof. However, if we treat

obtained result as a hint then we can start looking for a real proof using our brain, paper
and pencil.

Example 4 Intersection points of two circles with given centers and radii

Symbolic software can be extremely useful in many geometry examples where a lot of
calculations is needed. Here is one of such examples (taken from [2]).

63

The Electronic Journal of Mathematics and Technology, Volume 1, Issue 1, ISSN 1933-2823

B1

C2

G

A A1

B

H

C1

F

E

⇒
2·R·r

d

⇒
2·R·r

d

d

Rr

Figure 4: Two circles and tangent lines from centers in Geometry Expressions

Let us consider two intersecting circles C1 and C2 with radii equal to r andR respectively,
and coordinates of centers (a; b) and (c; d) (see �gure 5). We are going to calculate coordinates
of the intersection points.
In Geometry Expressions by selecting one of the intersection points, say Q, and clicking

the calculate coordinates tool we will produce a formula representing coordinates of this
point. The formula is very long and for this reason it will appear in the output window at
the bottom of the screen. In order to simplify this formula we will have to move to a CAS.
Like in other parts of this paper we will use MuPAD.
By copying the formula as MuPAD input, and pasting it into MuPAD notebook we

will be able to carry further calculations in MuPAD. The formula obtained in Geometry
Expressions pasted in MuPAD notebook looks quite complex. Therefore, we will not present
here some of the intermediate results obtained from MuPAD calculations. We will show
only these formulae that look reasonably simple. Note, in order to carry calculations more
e¢ ciently we had to assign the formula obtained in Geometry Expressions to a variable Q.
The remaining part of this declaration is the code obtained from Geometry Expressions and
roughly formatted to �t it inside of the page area.

Q:= // this line was added by hand
[(a+(((((a+(c*(-1))))^(2)+((b+(d*(-1))))^(2)))^((-1))*
((a*(-1))+c)*(((R)^(2)*(-1))+(r)^(2)+((a+(c*(-1))))^(2)+
((b+(d*(-1))))^(2))*1/2)+(((((a+(c*(-1))))^(2)+
((b+(d*(-1))))^(2)))^((-1))*(b+(d*(-1)))*
(((R*(-1))+r+((((a+(c*(-1))))^(2)+((b+(d*(-1))))^(2)))^(1/2)))^(1/2)*
((R+(r*(-1))+((((a+(c*(-1))))^(2)+((b+(d*(-1))))^(2)))^(1/2)))^(1/2)*
((R+r+(((((a+(c*(-1))))^(2)+((b+(d*(-1))))^(2)))^(1/2)*(-1))))^(1/2)*

64

The Electronic Journal of Mathematics and Technology, Volume 1, Issue 1, ISSN 1933-2823

N

M

Q1

Q

O

P

(a,b)

R

(c,d)

r

Figure 5: Two intersecting circles in Geometry Expressions

((R+r+((((a+(c*(-1))))^(2)+((b+(d*(-1))))^(2)))^(1/2)))^(1/2)*(-1/2))),
(b+(((((a+(c*(-1))))^(2)+((b+(d*(-1))))^(2)))^((-1))*((a*(-1))+c)*
(((R*(-1))+r+((((a+(c*(-1))))^(2)+((b+(d*(-1))))^(2)))^(1/2)))^(1/2)*
((R+(r*(-1))+((((a+(c*(-1))))^(2)+((b+(d*(-1))))^(2)))^(1/2)))^(1/2)*
((R+r+(((((a+(c*(-1))))^(2)+((b+(d*(-1))))^(2)))^(1/2)*(-1))))^(1/2)*
((R+r+((((a+(c*(-1))))^(2)+((b+(d*(-1))))^(2)))^(1/2)))^(1/2)*(-1/2))+
(((((a+(c*(-1))))^(2)+((b+(d*(-1))))^(2)))^((-1))*((b*(-1))+d)*
(((R)^(2)*(-1))+(r)^(2)+((a+(c*(-1))))^(2)+((b+(d*(-1))))^(2))*1/2))]:

Now, we can continue calculations using MuPAD�s functionality.

Q[1] := subs(Q[1], (a-c)^2+(b-d)^2=U^2):
Q[2] := subs(Q[1], (a-c)^2+(b-d)^2=U^2):
Q[1] := Simplify(Q[1]) assuming U>0;

a� (a� c) � (r
2 �R2 + (a� c)2 + (b� d)2)

2 � U2

�(b� d) �
p
R + U � r �

p
R� U + r �

p
U �R + r �

p
R + U + r

2 � U2

Q[2] := Simplify(Q[2]) assuming U>0;

b� (b� d) � (r
2 �R2 + (a� c)2 + (b� d)2)

2 � U2

65

The Electronic Journal of Mathematics and Technology, Volume 1, Issue 1, ISSN 1933-2823

�(a� c) �
p
R + U � r �

p
R� U + r �

p
U �R + r �

p
R + U + r

2 � U2

The obtained formulae look still quite complex. We will apply them in a more concrete
situation. For instance, let us take two circles with radii R = r = 2 and centers with
coordinates (1; 1) and (4; 3). Below we shown how one can calculate coordinates of one the
intersection points in MuPAD.

U := sqrt((a-c)^2+(b-d)^2):
u := subs(U, a=1, b=1, c=4, d=3, R=2, r=2);
p
13

q[1] := subs(Q[1], a=1, b=1, c=4, d=3, R=2, r=2, U=u);

p
13 �

p
4�

p
13 �

pp
13 + 4

13
+
5

2

q[2] := subs(Q[2], a=1, b=1, c=4, d=3, R=2, r=2, U=u);

2� 3 �
p
13 �

p
4�

p
13 �

pp
13 + 4

26

Finally we can simplify the obtained coordinates or calculate their �oating point values.

float(q[1]), float(q[2])

2.980384461, 1.279423308
The last two numbers can be inserted back into Geometry Expressions to check if the

produced result is correct (see �gure 6).
Before �nishing this example, let us look on a very interesting opportunity following from

using in Geometry Expressions intermediate variables. This time the output obtained from
Geometry Expressions was formatted as a MuPAD procedure.

Q := proc(a, b, c, d, R, r)
local d_3;
begin
d_3 := ((((a+(c*(-1))))^(2)+((b+(d*(-1))))^(2)))^(1/2);
[(a+(((a*(-1))+c)*(((R)^(2)*(-1))+(r)^(2)+(d_3)^(2))*(d_3)^((-2))*1/2)+
((b+(d*(-1)))*(((R*(-1))+r+d_3))^(1/2)*((R+(r*(-1))+d_3))^(1/2)*
((R+r+(d_3*(-1))))^(1/2)*((R+r+d_3))^(1/2)*(d_3)^((-2))*(-1/2))),
(b+(((a*(-1))+c)*(((R*(-1))+r+d_3))^(1/2)*((R+(r*(-1))+d_3))^(1/2)*
((R+r+(d_3*(-1))))^(1/2)*((R+r+d_3))^(1/2)*(d_3)^((-2))*(-1/2))+
(((b*(-1))+d)*(((R)^(2)*(-1))+(r)^(2)+(d_3)^(2))*(d_3)^((-2))*1/2))];
end_proc:

Like before, the Geometry Expressions output after copying it into MuPAD requires some
minimal adjustments. Here we assigned the procedure to a name, Q, and we rearranged input
parameters of the procedure, so they form a logical sequence. We could also use some local

66

The Electronic Journal of Mathematics and Technology, Volume 1, Issue 1, ISSN 1933-2823

1 2 3 4 5 6­1

1

2

3

4

5

­1

C

B

A

D

E

F

⇒ ∼(2.9803845,1.2794233)

2

(4,3)

2

(1,1)

Figure 6: In GE the coordinates of the intersection point are the same as in MuPAD

variables and a statement to simplify the �nal result as well as add the code to prevent some
input errors (see [4]). However, this is not absolutely necessary.
Applying the procedure to the circles with coordinates of centers (1; 1) and (4; 3), and

radii R = r = 2, we get the same result like before.

Q(1,1,4,3,2,2)"p
13 �

p
4�

p
13 �

pp
13 + 4

13
+
5

2
; 2� 3 �

p
13 �

p
4�

p
13 �

pp
13 + 4

26

#
float(Q(1,1,4,3,2,2))

[2.980384461, 1.279423308]

5 Final comments and Conclusions

Solving geometry problems in Computer Algebra Systems alone, i.e. without a DG interface,
requires more work. However, students are able to follow the solving process step-by-step
and go through a very detailed analysis of the problem as well as its solution. Solution
obtained this way can be later generalized and programmed in such a way that it will be
usable in many similar cases. For instance a process of �nding common tangent lines for a
given two circles can be wrapped up into a procedure that will produce common tangent
lines for any two given circles.

67

The Electronic Journal of Mathematics and Technology, Volume 1, Issue 1, ISSN 1933-2823

Combination of a CAS and DG interface creates very powerful and attractive set of tools
for teaching and working with geometry problems. Such software can be used to explore
geometry examples, to do some observations, and draw conclusions. Such conclusions in
many examples can be later proved by hand as valid geometry facts.
Symbolic geometry software may not be the best tool for teaching low level topics of

geometry where we deal with basic relations and constructions. We have to �nd a good
strategy of using these tools in order to not lose anything from the learning process and
bene�t at the same time from features provided by the software. The situation changes to
a completely opposite while teaching geometry on a more advanced level. Here the easy-to-
apply elementary features of the software will allow us to simplify the solving process and
concentrate on producing a solution.
In this paper we demonstrated a number of advantages of the symbolic geometry ap-

proach. However, this approach still needs a lot of experimenting in a real classroom envi-
ronment, testing how students will be accepting such approach, and how it will in�uence the
learning geometry on various levels. It will be also necessary to develop teaching resources
for teachers� textbooks and notebooks demonstrating in a systematic way how geometry
can be taught with such software. At the moment there exists a large library of MuPAD
notebooks for teaching undergraduate mathematics. Some of them address analytic geome-
try topics. However, this library is in German and English version of it may be available in
a matter of a few months.

6 References

1. Geometry Expressions Manual, Saltire Software, Beaverton, 2006.

2. Coxeter H.S.M., Greitzer S.L., Geometry Revisited, The Mathematical Association of
America, 1967.

3. Fuller G., Analytic Geometry, Addison-Wesley Publishing Company, Massachusetts,
1980.

4. Majewski M., MuPAD Pro Computing Essentials, second edition, Springer Verlag,
Berlin, 2004.

5. Smart J.R., Modern Geometries, Brooks/Cole Publishing Company, Paci�c Grove,
1988.

68

