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Abstract

In this paper, we examine the use of a simple stochastic differential equation in the
modelling of an epidemic. Real data for the Singapore SARS outbreak are used for
a detailed study. The model is solved numerically and implemented on matlab, with
further analysis and refinement. This article is built around several matlab programs
and serves to provide a practical and accessible introduction to numerical methods for a
stochastic model for epidemics.

1 Introduction

Mathematical modelling forms an important part of many tertiary courses in mathematics and
engineering. In recent times, it has gained more attention and awareness in other fields such
as bioengineering, economics, biology, epidemiology and the medical sciences. Traditionally,
the techniques used and skills involved are confined to deterministic models based on concepts
from algebra, vector calculus, regression, differential equations and so on [1].

Notwithstanding their popularity, one major shortcoming of deterministic models is their
inability to include an element of uncertainty or noise. On the other hand, a purely empirical
model developed from known data often lacks the predictive value that may be gained from
the knowledge of the dynamics of the problem. Therefore, a more desirable model would be
one that harnesses the best aspects of both approaches. This may be done by including some
stochastic noise components into a deterministic model.

In this paper, we discuss the use of a stochastic differential equation (SDE) in the modelling
of an infectious disease, using the outbreak of Severe Acute Respiratory Syndrome, or SARS,
in Singapore in 2003 as a practical example for a more detailed study. The theory of SDEs is
kept to a minimum intentionally, while practical implementations of the numerical solution are
discussed in detail.
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A complete understanding of SDE theory demands prerequisite knowledge and skills in
advanced probability theory and stochastic processes. This paper does not aim to provide such
theoretical background. Instead, the intent here is to demonstrate how an SDE may be used
to simulate the progression of a disease outbreak, and to introduce a practical and accessible
way in which one could experiment with an SDE model.

Nevertheless, it is acknowledged that there are readers who may wish to have a deeper
understanding of SDEs. Those who are keen to learn more about SDEs may wish to refer
to [2] and [3], both of which are comprehensive references for the subject. For details on the
numerical treatment of SDEs, [4] is recommended.

In the next section, a model for the proliferation of a highly communicable disease based
on an SDE is introduced. A numerical scheme, namely the Euler-Maruyama method, for
approximating the solution of an SDE is then described. The scheme is then applied to the
case of a SARS outbreak in Singapore and implemented on matlab. This is described in
Section 3, where numerical simulations and their results are also briefly discussed. Section 4
examines some ways of modifying and refining the model, and results from more simulations
are presented. In Section 5, a brief mention of some important issues surrounding such models
is made.

All programs in this paper are written and tested on matlab R2006b. matlab is an
ideal platform for numerical simulations of this nature because of the availability of a high
level random number generator, graphics facilities and vector computation features. Program
listings as well as video-clips of simulation runs may be downloaded at

http://math.nie.edu.sg/kcang/ejmt0702

or https://php.radford.edu/ ejmt/Content/Papers/v1n2p3/kcang.htm.

2 A stochastic model for a SARS outbreak

A simple deterministic model for the spread of a highly communicable disease such as SARS is
given by the ordinary differential equation [5]

dx

dt
= λx (n− x) , (1)

where x(t) is the number of infected and susceptible individuals at time t (in, say, days), λ is
some constant of proportionality, and n is the total number of individuals in that community.
Equation (1) is the well known logistic equation.

This model is based on the two-compartment “S-I” (or Susceptible-Infectious) epidemic
model. For details on the derivation and justification of the S-I model, one may refer to [6] and
[7].

While this model provides a predictive value to some extent, it does not take into account
the stochastic nature (or “white noise”) that are often present in such situations. To introduce
a stochastic component into the model, an SDE of the form

dX(t) = λX(t)(n−X(t)) dt+ µX(t) dW (t), X(0) = X0, 0 ≤ t ≤ T, (2)

may be used [4]. Here, λ and µ are real constants, and W (t) is a random variable representing
a standard Wiener process or Brownian motion. The function in the first term on the right
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hand side of Equation (2) is known as the drift while that in the second term is the diffusion. It
is clear that drift represents the deterministic portion of the model, while diffusion represents
the stochastic component.

To solve the equation numerically, we employ the Euler-Maruyama (EM) method. The EM
method is discussed in some detail in [8]. For the reader’s convenience, the method is briefly
described here.

First, we need a way to construct or simulate a Brownian motion. In numerical simulations,
it is usual to consider a discretized Brownian motion, in which W (t) is sampled at discrete t
values. Setting δt = T

N
for some positive integer N , we have

dWj = Wj −Wj−1, j = 1, 2, . . . , N, (3)

where dWj ∼
√
δtN(0, 1).

In matlab, the function randn may be used to generate a random number drawn from the
N(0, 1) distribution. This feature is used to generate a discretized Brownian path for all the
simulations here. In order to simulate a state of randomness, the command

randn(’state’,sum(i*clock))

is used. Since the initial state depends on the “value” of the clock at the time the command
is executed, each time the program is run, presumably a new set of random numbers will be
generated. If, instead, one wishes to reproduce a particular set of random numbers, the value
of “state” in the command may be fixed by replacing “sum(i*clock)” by an integer. As an
example, one could use randn(’state’,123) to generate a fixed set of random numbers. The
random numbers so generated are then scaled by a factor of

√
δt and stored as an array in the

variable, dW.
The EM method may now be applied to Equation (2) over an interval [0, T ]. The time

interval is first discretized. We define ∆t = T
L

, for some positive integer L and let τj = j∆t.
Then, the EM method yields

Xj = Xj−1 + λXj−1(n−Xj−1)∆t+ µXj−1(W (τj)−W (τj−1)), j = 1, 2, . . . , L, (4)

where Xj is the numerical approximation to X(τj). Note that if µ = 0, Equation (4) is simply
the Euler approximation to the deterministic model given by the logistic equation (1).

For computational convenience, we set the stepsize ∆t to be some integer multiple R of the
increment δt; that is, ∆t = R × δt. Doing so will force the set of points {tj} on which the
Brownian path is based to contain the set {τj}.

In addition, the increment W (τj)−W (τj−1) needs to be computed on a general step in the
EM method. This is given by

W (τj)−W (τj−1) = W (jRδt)−W ((j − 1)Rδt) =

jR∑
k=jR−R+1

dWk. (5)

In all the programs in this article, this quantity is computed using the matlab command
winc = sum(dW((j-1)*R+1:j*R)),

which provides the values of the increments needed in Equation (4). In addition, for each run of
the program, the number of sample paths is specified by the user. The final numerical solution
is computed as an average of all admissable results.
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3 Numerical Simulations

Table 1 below shows the cumulative number of individuals infected with SARS in Singapore in
2003 [9]. The outbreak began with one case on Day 0, and continued till Day 70 when a total
of 206 cases was recorded.

Table 1: Cumulative number of individuals infected with SARS in Singapore from 24 February
to 7 May 2003

Day Number Day Number Day Number
0 1 24 84 48 184
1 2 25 89 49 187
2 2 26 90 50 188
3 2 27 92 51 193
4 3 28 97 52 193
5 3 29 101 53 193
6 3 30 103 54 195
7 3 31 105 55 197
8 5 32 105 56 199
9 6 33 110 57 202
10 7 34 111 58 203
11 10 35 116 59 204
12 13 36 118 60 204
13 19 37 124 61 204
14 23 38 130 62 205
15 25 39 138 63 205
16 26 40 150 64 205
17 26 41 153 65 205
18 32 42 157 66 205
19 44 43 163 67 205
20 59 44 168 68 205
21 69 45 170 69 205
22 74 46 175 70 206
23 82 47 179

The matlab M-file sars1.m (see program listing in Appendix) simulates the progression
of the outbreak based on the data in Table 1. In the data set, we have n = 206 and X0 = 1.
Unfortunately, in matlab, there is a minor inconvenience in that arrays begin with index 1
and not 0. To overcome this slight problem, we begin our simulation from Day 1. Thus, we set
X1 = 2 in the model, and discard X0.

It is also neater, in terms of programming, to set T = 1 and scale the time interval of 70
days by letting N = 70×R, where R = 210 is an arbitrarily chosen positive integer. The other
parameter that has to be specified is λ, and in all our simulation runs, we set λ = 0.05.
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In this script (sars1.m), the user specifies the values of µ (which should be non-negative)
and the number of sample paths in one run. As an example, if we choose µ = 0.25 and use 500
paths for a simulation run, we would type sars1(0.25,500) at the command prompt.

Note that the deterministic model (that is, logistic equation) may be easily recovered by
letting µ = 0 and running the simulation with just one sample path. Figures 1 and 2 below
show the graphical output from the program for µ = 0 (with one path) and a sample case for
µ = 0.25 (with 500 paths) respectively, together with the real data for comparison.
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Figure 1: Graphical output from sars1.m

with µ = 0
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Figure 2: Graphical output from sars1.m

with µ = 0.25 and 500 sample paths

We define the “average” error, denoted by E, of a simulation run to be given by

E =

√∑70
i=1(X̂i −Xi)2

70
(6)

where X̂i and Xi are values obtained from the data and the model respectively. Using this
definition, it is found that E = 2.0148 for the case of the deterministic model (that is, when
µ = 0). For the case when µ = 0.25, with 500 paths in the simulation run, the sample output
shown in Figure 2 has an average error E = 1.952567. It is important to point out that this
is only a sample and if one runs the program again with the same values of µ and number of
trials, one could get a different output with a different value for E.

As can be seen from both graphs, the model does not seem to agree with the data very
well for values of X between about 20 and about 100, although towards the latter part of the
outbreak period, a better fit is obtained. If the outbreak can indeed be modelled by a logistic
equation with some stochastic effects, then the data set seems to suggest that these effects are
more significant in this region. That is, for 20 ≤ X ≤ 100, there should be a greater presence
of diffusion in the model. In physical terms, doing so may be viewed as having the model take
into account a variety of factors (including human intervention, changes in disease transmission
rates, and so on) that could have influenced the outbreak.
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4 Modifying the model

In the SDE model given in Equation (2), the diffusion term takes the form of µX(t). From
Figure (2), it can be seen that the model exhibits fairly significant “noise” at higher values of
X. This is to be expected since diffusion in this model is an increasing function of X.

From the actual data collected, however, it appears that for such an outbreak, stochastic
effects are less crucial near the beginning and end of the outbreak episode. This could be due
to the fact that at the beginning, as the number of infected individuals is small, the disease is
only spreading gradually and has yet to progress to an epidemic state. Towards the end of the
episode, perhaps due to intervention and control measures, the spread of the disease is brought
under some control. It is therefore not unreasonable to assume that white noise should be more
pronounced towards the middle portion of the outbreak episode.

There are many ways in which one could modify the diffusion term in the model to take
into account the characteristic of the outbreak stated in the preceding paragraph. Here, we
describe two ways.

4.1 Piecewise-defined g(X)

The SDE in Equation (2) may be written as

dX(t) = λX(t)(n−X(t)) dt+ µg(X(t)) dW (t), (7)

where g(X) = X. To emphasize a greater significance of diffusion at some portion of the
outbreak episode, the function g(X) may be defined in some form of step function. In the
script sars2.m1, we define

g(X) =


1.75, 0 ≤ X < 20
2.75, 20 ≤ X < 100
1.75, X ≥ 100

(8)

so that when X falls between 20 and 100, a higher degree of diffusion is introduced into the
model. There are, of course, other ways of specifying such a function, depending on how one
wishes to model the relative impact of diffusion.

Figures 3 and 4 show the graphs of two typical simulation runs of this modified model with
µ = 5 with 500 sample paths, and µ = 8 with 1000 sample paths respectively. In the cases
presented here, the average errors are 1.334566 and 1.024202 respectively.

It is evident from the graphs in both Figures 3 and 4 that the model in this case seems to
represent the data values more closely than in the preceding case where g(X) = X. Note that
the values of µ are chosen arbitrarily, and they depend on the magnitudes of the “steps” in the
definition of g(X) in Equation (8).

1available from http://math.nie.edu.sg/kcang/ejmt0702
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Figure 3: Graphical output from sars2.m

with µ = 5 and 500 sample paths
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Figure 4: Graphical output from sars2.m

with µ = 8 and 1000 sample paths

4.2 Bell-shaped g(X)

Another way is to define g(X) as a “bell-shaped” curve, centred at around the middle portion
of the total number of infected individuals. To do so, we can define

g(X) = exp
(
−k2(X − 103)2

)
, (9)

where k is some constant. This provides a continuous function for g(X) and by varying k, one
could model the “spread” of influence of diffusion over the outbreak episode. Figure 5 shows
the graphs of g(X) for a few values of k. The script is now modified to include an additional
parameter k and is stored as sars3.m.
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Figure 5: Graph of g(X) for various values of k
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Results from two typical simulation runs are shown in Figures 6 and 7. In Figure 6, we set
µ = 20, k = 0.001 and performed the simulation with 500 sample paths, obtaining an average
error of 1.347614. Figure 7 shows the model results with µ = 20 and k = 0.002, with 1000
sample paths. The average error in this case is 1.000880.
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Figure 6: Graphical output from sars3.m

with µ = 20, k = 0.001, and 500 sample
paths
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Figure 7: Graphical output from sars3.m

with µ = 20, k = 0.002, and 1000 sample
paths

It is possible to modify the model in other ways to include other forms of diffusion. However,
it is important to bear in mind that all these modifications are not simply attempts to obtain a
better fit between the model and the data. The more pertinent issue here is obtaining a more
realistic and reasonable representation of the physical situation, yet keeping the essence of the
model intact.

In terms of implementation, it is perhaps more convenient to a user if a Graphics User
Interface (GUI) version of the matlab programs to run the simulations in the modified models
is available. This is also where matlab’s GUI features may be capitalized. Two versions,
simsars2.m and simsars3.m, have been produced and screenshots of typical runs are shown
in Figures 8 and 9.
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Figure 8: Typical screenshot from GUI version, simsars2.m

Figure 9: Typical screenshot from GUI version, simsars3.m
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5 Concluding Remarks

Modelling of epidemics and studies in epidemiology often involves systems of differential equa-
tions. Traditionally, the SIR or SEIR models are used in such studies (see [6], [7]). Although
these are useful instruments, they are essentially deterministic in nature, and are not capable
of capturing uncertainties or noise into the model.

In this paper, a simple stochastic model for the spread of a highly communicable disease
is presented. Empirical data from the Singapore SARS outbreak in 2003 provided the models
discussed a means to test and experiment with the models. In addition, the supplied matlab
programs implementing the numerical scheme has made this modelling process involving SDEs
more accessible.

There are some parameters (such as µ and k) that appear in the models. As in typical
empirical models, such parameters do not have any physical significance other than being
arbitrary constants chosen carefully through experiments to suit a particular set of data. In
the case of the parameter µ, it represents the “amount” of noise in the model, and it is difficult
to predict or estimate without the aid of data.

The S-I model discussed in this paper assumes a closed community. In other words, all the
n individuals in the community do not leave the “system”, and eventually all will be infected.
Even in more sophisticated models (such as SIR and SEIR), such an assumption is sometimes
necessary in order to reach a solution. The question is not how many susceptible individuals
will become infectious (since, according to the model, all will be infected), but perhaps how
quickly the epidemic is spreading and when will the spread slow down.

It is not the intention of this paper to construct an accurate stochastic model for a SARS
outbreak. Detailed treatment of SDEs involves prerequisite knowledge in various areas of
mathematics and it is neither practical nor wise to do so in this article. Instead, through
simulation runs of the matlab programs, this paper serves to provide a way for readers to
experiment with SDEs using a simple case of a disease outbreak.
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Appendix: Program Listing for sars1.m

% Euler-Maruyama method for a SARS epidemic model
% dx = lambda*(x*(n-x))dt + mu*x dW, x(1)=x1
%
% KC Ang (April 2007)

function [X]=sars1(mu,Paths)

x1=2; % initial value (from data)
n=206; % final value (from data)
lambda = 0.05; % set parameter values
T = 1; R = 2^10; N = 70*R;
dt = T/N; Dt = R*dt; L = N/R;
X = zeros(1,L); % initialize solution vector

for i = 1:Paths
x = zeros(1,L);
xt = x1;
randn(’state’,sum(i*clock)); % vary state
dW = sqrt(dt)*randn(1,N); % Brownian increments

for j = 1:L
winc = sum(dW((j-1)*R+1:j*R));
xt = xt + lambda*xt*(n-xt)*Dt + mu*g(xt)*winc;
x(j)=xt;

end

if sum(x)>0
if i == 1

X = x;
else

X = (X+x)/2;
end

end
end

% real data
sdata=[ 2 2 2 3 3 3 3 5 6 7 10 13 19 23 ...

25 26 26 32 44 59 69 74 82 84 89 90 92 97 ...
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101 103 105 105 110 111 116 118 124 130 138 150 153 157 ...
163 168 170 175 179 184 187 188 193 193 193 195 197 199 ...
202 203 204 204 204 205 205 205 205 205 205 205 205 206 ];

plot(sdata,’rx’,’LineWidth’,2);
hold on
X=[x1,X];
plot(X,’b-’,’LineWidth’,2);
hold off
xlabel(’t (days)’,’FontSize’,12);
ylabel(’No of infected persons’,’FontSize’,12,’Rotation’,90);
title(’SARS epidemic with g(x)=x’,’FontSize’,12);
text(5,215,’Data x’,’Color’,’r’,’FontWeight’,’bold’);
text(5,200,’Model --’,’Color’,’b’,’FontWeight’,’bold’);
%
err=0.0;
for i=1:70

err=err+(X(i)-sdata(i))^2;
end
err=sqrt(err)/70;
fprintf(’Average Error = %10.6f \n’,err);

% -------------------------------------------------------------
% function g
function y = g(x)
y=x;
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