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Abstract
We demonstrate how evolving technological tools have led to advances in the teaching

and learning of mathematics and in the production of mathematical research. In particu-
lar, the integration of dynamic geometry software (DGS) with a computer algebra system
(CAS) has led to new methods for solving existing problems and has revealed the exis-
tence of new concepts waiting to be discovered. We demonstrate also how DGS software
frequently provides the crucial insights and accessibility that motivate conjectures that
can be proved analytically with the help of a CAS. There are two video clips which give
some geometric insights of how we prove Mean Value Theorem and Cauchy Mean Value
Theorem, they are located respectively at

http://mathandtech.org/eJMT_Yang_iss2_07/MVT/MVT.html

and
http://mathandtech.org/eJMT_Yang_iss2_07/CMV/CMV.html:

1 Introduction

We �rst give a geometric interpretation of how Mean the Value Theorem is proved and sim-
ulate the graph to which we normally apply the Rolle�s Theorem. Next, we give a geometric
description of how the Cauchy Mean-Value is stated and shed some light on how we can arrive
at the function to which Rolle�s Theorem is applied to yield the Cauchy Mean Value Theorem
holds. We also show how to solve numerically for a number that satis�es the conclusion of the
theorem.
Finally, we give an alternative interpretation of the Lagrange Remainder Theorem. This

interpretation allows us to �nd and solve numerically for the number whose existence is guar-
anteed by the Theorem. It also allows us to approximate the remainder term for a given
function.

2 Geometric Interpretation of Mean Value Theorem

The Mean Value Theorem can be stated as follows:
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Theorem 1 Suppose the function f : [a; b] ! R is continuous on [a; b] and di¤erentiable on
(a; b). Then there is a point x0 in (a; b) at which

f 0(x0) =
f(b)� f(a)
b� a :

To prove this theorem, in many traditional text books, one introduces the function h de�ned
at each number x by the following equation

h(x) = f(x)� f(a)�
�
f(b)� f(a)
b� a

�
(x� a): (1)

Then we use the fact that h satis�es the conditions for Rolle�s theorem to deduce that there
is a point c in (a; b) such that h0(c) = 0, and the Mean Value Theorem follows.
We give a geometric motivation on the graph of y = h(x) and how the graph of y = h(x) can

be simulated with the help of a dynamic geometry system such as [ClassPad]. We consider a
nice smooth function f(x) = cos(x) (i.e. satisfying the conditions of the Mean Value theorem)

over the interval covering (a; b) = (��
2
; 0:725) shown in Figure 1 below. We connect the line

segment AB, where A = (��
2
:0) and B = (0:725; f(0:725)) lying on y = f(x) and ask the

following question:
If we rotate line segment AB (while AB is attached to the graph of the function) so that

AB becomes a horizontal line segment, how would the graph of the original function appear?

Figure 1. The graph of a function and a chord

We summarize the constructions below and we refer readers to a video clip to glimpse how
dynamic geometry and computer algebra system play roles here. In this example, we select f
and the line segment AB so that f(x) > AB, where x 2 [��

2
; 0:725] for demonstration purpose:

� Step 1. Construct a point D on AC and animate the point D along the line segment AC.

� Step 2. Construct the line passing through D and perpendicular to AC and intersect
y = f(x) and AB at E and F respectively.
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� Step 3. We collect the (x; y) coordinate for the point D and the distance EF , We show
the x-value of D in the �rst column and distance EF in the second column below:

Table 1. Table for the scatter plot of y = h(x):

� Step 4. We drag the x-value of D and distance EF back to the geometry strip (within
ClassPad) to obtain the green graph in Figure 2. We observe that this is a scatter plot
of y = h(x).

Figure 2. The graphs of two functions and a chord
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First, we denote the intersection between the green curve and the vertical line to be G:
Then since

EF = GD

and if the line segment AB is represented by y = mx + b1, the green curve above can be
represented by y = f(x)� (mx+ b1) and if we denote this by h(x); or

h(x) = f(x)� (mx+ b1) : (2)

We see if h0(c) = 0 for some c in (a; b) then f 0(c) = m: This is saying that the same c which
makes the horizontal tangent for h will make the slope of the tangent line of f at x = c to be
the slope of the secant line AB: In other words, we are saying the motivation of equation (1)
is given by equation (2). Finally, we �nd c, numerically, to be �0:3320693226:

3 Geometric Interpretation of Cauchy Mean Value The-
orem

We use similar approach mentioned above to demonstrate how geometric interpretations of the
Cauchy Mean Value Theorem can be explored with the help of DGS and CAS. The Cauchy
Mean Value Theorem can be stated as follows:

Theorem 2 Suppose the function f : [a; b] ! R and g : [a; b] ! R are continuous and that
their restrictions to (a; b) are di¤erentiable. Moreover, assume that g0(t) 6= 0 for all t in (a; b):
Then there is a point t in (a; b) at which

f(b)� f(a)
g(b)� g(a) =

f 0(t)

g0(t):

We see little geometric motivation of why we have two functions f and g and how the
conclusion is obtained. This shall become clear later. We make the following observations.

1. Assume functions f and g satisfy the condition of the Cauchy Mean Value Theorem, the
Theorem holds, can be interpreted as any number t for which the parametric curve P
de�ned by the equation

P (t) = [g (t) ; f (t) ]

for a � t � b has slope equal to the slope of the secant that runs from the point
(g (a) ; f (a)) to the point (g (b) ; f (b)).

2. Alternatively, if we apply the Mean Value Theorem to the graph of a polar equation
r = h(�), writing the polar equation in a parametric form

[x(�); y(�)] = [h(�) cos(�); h(�) sin(�)] = [g(�); f(�)]; (3)

then we will obtain the conclusion of Cauchy Mean Value Theorem (see [1]).

3. We use the following example to give motivations for the conclusion and the proof of
Cauchy Mean Value Theorem. The technique used here can be applied to arbitrary case
when the Theorem holds. A video clip which inspires the geometric interpretation of
Cauchy Mean Value Theorem can be found here.
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Example 3 We consider the curve P (t) of the form [x(t); y(t)] = [t cos t; t sin t] in the interval
t 2 [0; 2�], and let A = (��; 0); C = (0; �

2
):(1) We want to �nd t on curve of P (t) where the

slope of the tangent line is same as the slope of AC when t 2 [�
2
; �]. (2) Describe how we

can arrive at the function to which Rolle�s Theorem is applied to yield the Cauchy Mean Value
Theorem holds for P (t) on AC when t 2 [�

2
; �]. In other words, we want to �nd the equation

of the thick curve Q(t) in Figure 3 below, when AC becomes a horizontal line segment.

We sketch the graph of [x(t); y(t)] and line segment AC below in Figure 3 and we write the
equation of the thick curve Q(t) as [x(t); y1(t)]; which is what we would like to �nd and where
we will apply Rolle�s Theorem later.

Figure 3. The graphs of [t cos t; t sin t]; a cord and another parametric curve

We brie�y describe how we simulate the curve Q(t) below:
Step 1. We construct the curve [t cos t; t sin t].
Step 2. Drag and drop the points A = (��; 0); B = (0; 0) and C = (0; �

2
) into the graph.

Step 3. Select the point D on [t cos t; t sin t].
Step 4. Construct a perpendicular line passing through D and perpendicular to AB; and

intersect the line segments AC;AB and thick graph respectively at E;F and G:
Step 5. Animate D along [t cos t; t sin t] by properly selecting the range of the parameter for

animation.
Step 6. Collect and drag the x-value of D and the distance DE into the curve of P (t); we

get the thick curve Q(t).
To �gure out the equation for the thick curve Q(t), [x(t); y1(t)]; the key here, similar to

what we have done earlier for Mean Value Theorem, is

DE = GF: (4)

Since DE = f(t)� EF; we can write

y1(t) = GF = f(t)� EF: (5)

First, we need to determine the equation for AC:
Since A = (��; 0);and C = (0; �

2
); we get the slope of AC to be m = 1

2
. We note that

m =
f(b)� f(a)
g(b)� g(a) and we get y =

1
2
x+ �

2
; the parametric equation for AC can be written as
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[x(t); y(t)] = [t cos(t);m � x(t) + b1]
= [t cos(t);m � g(t) + b1]

= [t cos(t);
1

2
t cos t+

�

2
]:

Thus we have

y1(t) = f(t)� y = f(t)� (m � x(t) + b1)
= f(t)� (m � g(t) + b1)
= f(t)� (m � t cos t+ b1)

= t sin(t)�
�
1

2
t cos t+

�

2

�
; (6)

and the parametric equation for Q (where we apply Rolle�s Theorem) is

[x(t); y1(t)] = [t cos(t); f(t)� (m � t cos t+ b1)]

= [t cos(t); t sin t�
�
1

2
t cos t+

�

2

�
]: (7)

To �nd where Q has a horizontal tangent, we note dy
dx
=

dy
d�
dx
d�

and dy
dx
= 0 implies that

dy1
dt
=
d

dt
(f(t)� (m � g(t) + b1))

=
d

dt
(f(t)� (m � t cos t+ b1)) = 0: (8)

Therefore we need to solve for t so that f 0(t) = mg0(t) or

f 0(t)

g0(t)
= m =

f(b)� f(a)
g(b)� g(a) : (9)

This is exactly what the Cauchy Mean Value theorem has stated.
Now it is a standard exercise to solve for t: We �nd t to be about 2:425497143 (when

m = 1
2
; a = ��; and b = 0 respectively).

In summary, the equation of the straight line that runs from A = (g (a) ; f (a)) to C =
(g (b) ; f (b)) is

y = f (a) +
f (b)� f (a)
g (b)� g (a)

�
x� g (a)

�
(10)

Furthermore, we conclude that the curve Q is de�ned to be

Q (t) =

�
g (t) ; f (t) � f (a)� f (b)� f (a)

g (b)� g (a)
�
g (t)� g (a)

��
(11)

and that this curve Q has a horizontal tangent when

f 0 (t)� 0� f (b)� f (a)
g (b)� g (a) g

0 (t) = 0 (12)
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which says that
f 0 (t)

g0 (t)
=
f (b)� f (a)
g (b)� g (a) : (13)

Obviously, the Cauchy Mean Value is an extension of Mean Value Theorem. We naturally can
replace the chord by a smooth curve connecting A and C in the previous example; and the
technique we used (with the help of DGS and CAS) earlier for simulating the curve Q(t) can
be applied analogously.

4 Alternative Interpretations of Lagrange Remainder The-
orem

Many traditional theorems guarantee us the existence of a solution. With the CAS, we can
attempt to approximate where the solution is. For example, the Lagrange Remainder Theorem
(see below) guarantees us the existence of the point c; we will show with the help of a CAS, we
can �nd such c (if the equations are solvable by a CAS).

Theorem 4 Let I be a neighborhood of the point x0 and let n be a nonnegative integer. Suppose
that the function f : I ! R has n + 1 derivatives. Then for each x 6= x0 in I; there is a point
c in (x; x0) or (x0; x) such that

f(x) =
nX
k=0

f (k)(x0)

k!
(x� x0)k +

f (n+1)(c)

(n+ 1)!
(x� x0)n+1:

4.1 Finding a solution numerically

We consider the function f(x) = x
1
3 ; and we pick x0 = 8, we want to �nd the number c that

is guaranteed by the Lagrange Remainder Theorem for the function f at x0, I = (7; 9) and
n = 2: The 2nd degree Taylor polynomial for f at x0 = 8 is

p2(x) =
3
p
8 +

(x� 8) 3
p
8

24
� (x� 8)

2 3
p
8

576
: (14)

We write the remainder

R2(x; 8) = R2(x) = f(x)� p2(x) = 3
p
x�

 
3
p
8 +

(x� 8) 3
p
8

24
� (x� 8)

2 3
p
8

576

!
; (15)

and we demonstrate for each x 6= 8 in (7; 9); there is a point c in (x; 8) or (8; x) such that

R2(x) =
R
(3)
2 (c)

3!
(x� 8)3,

where R(3)2 (c) = f (3)(c) � p
(3)
2 (c) = f (3)(c): Assume we choose x = 7:5; we set g(x) =

R
(3)
2 (x)

3!
(7:5 � 8)3: We want to �nd c in (7:5; 8) such that R2(7:5) = g(x): This is solvable

by a CAS, we �nd c = 7:872817270:
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Here is an alternative way to interpret the theorem. We de�ne

F (x) = R
(3)
2 (x) = f

(3)(x):

and

G(x) =
R2(x) � 3!
(x� 8)3 :

We graph y = F (x) (in green) and y = G(x) (in red) together in Figure 4 in the interval [7; 8]
below and make the following observations:

Figure 4. Graphs of y = F (x) and y = G(x)

Remark 5

1. The Lagrange Remainder Theorem guarantees us that if we pick a point x in (7; 9) except
x = 8 for the function G; we can �nd a c so that G(x) = F (c).

2. Therefore, if we pick any x in (7; 8) on y = G(x), we can �nd the corresponding point
(by going horizontal direction) on y = F (x) so that F (c) = G(x). Similarly, if we
pick (8; 9) on y = G(x), we can �nd the corresponding point on y = F (x) so that
F (c) = G(x). For example, if we pick x = 7:5, we see G(7:5) = 0:00150993 and if we
solve F (x) = 0:00150993;we get x = 7:872810231;which is consistent with the answer we
obtained earlier.

3. In other words, any point x in (7; 9) except x = 8; the complex expression G(x) =
R2(x) � 3!
(x� 8)3 = 3

p
x �

 
3
p
8 +

(x� 8) 3
p
8

24
� (x� 8)

2 3
p
8

576

!
; can be computed by a simpler

expression F (c) = R(3)2 (c) = f
(3)(c) for a proper c:

A CAS can be used to help us to anticipate that such a number c should exist it can help
us to appreciate the Lagrange Remainder Theorem by showing us how to estimate the number
c. Thus, author proposes the following alternative interpretation of the Lagrange Remainder
Theorem.
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Theorem 6 Let I be a neighborhood of the point x0 and let n be a nonnegative integer. Suppose
that the function f : I ! R has n + 1 derivatives. Then for each x 6= x0 in I; we can �nd the
point c in (x; x0) or (x0; x) such that

G(x) = F (c);

where G(x) =

�
f(x)�

Pn
k=0

f (k)(x0)
k!

(x� x0)k
�
(n+ 1)!

(x� x0)n+1:
and F (x) = f (n+1)(x):

4.2 Approximating the Remainder Terms Graphically

Inspired by Theorem 6, we can apply Lagrange Remainder Theorem to approximate the re-
mainder terms graphically. Assume the conditions of the Theorem 4 hold and we consider

f(x) =
nX
k=0

f (k)(x0)

k!
(x� x0)k +

f (n+1)(c)

(n+ 1)!
(x� x0)n+1:: (16)

We write

Rn(x) = f(x)�
nX
k=0

f (k)(x0)

k!
(x� x0)k: (17)

The Theorem 4 guarantees us for each x 6= x0 in I; we can �nd the point c in (x; x0) or (x0; x)
such that

Rn(x) =
f (n+1)(c)

(n+ 1)!
(x� x0)n+1:: (18)

Now we assume c 2 (x; x0) and let y 2 [x; x0]: We de�ne

Fn(y) =
f (n+1)(c)

(n+ 1)!
(y � x0)n+1:: (19)

Thus, we have Rn(x) = Fn(x); Rn(x0) = Fn(x0) and as we expected we have the following
observations:

1. For each �xed non-negative integer n; Fn(y) can be used to approximate Rn(y) in the
interval [x; x0]:

2. We can interpret the generalized Mean Value Theorem as follows: Assume the conditions
of Lagrange Theorem holds for the function f; for each x 6= x0 in I; we can �nd the point
c in (x; x0) or (x0; x) such that

Rn(x)

(x� x0)n+1:
(n+ 1)!

= f (n+1)(c): (20)

3. We see that Rn(y)� Fn(y) converges to 0 uniformly in [x; x0] as n!1:

We note that Taylor polynomials are to appropriate a function locally in a speci�ed interval.
We will use the following example to demonstrate how the remainder terms converge for a given
function.
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Example 7 Consider f(x) = cosx and we pick x = 0 and x0 = 0:725:

Case 1. For n = 0; it follows from Lagrange Theorem that there is a c 2 (x; x0) such that

R0(x) = f(x)� f(x0) =
f 0(c)

1!
(x� x0): (21)

In this case, we can solve c to be about 0:3542609993408: [We note that we are solving the

c such that f 0(c) =
f(x)� f(x0)
x� x0

; where c is guaranteed by the Mean Value Theorem.] Next

we de�ne

F0(y) =
f 0(c)

1!
(y � x0) (22)

for y 2 [x; x0]: We sketch z = R0(y) and z = F0(y) for y 2 [x; x0] as follows (z = R0(y) in red
and z = F0(y) in green):

Case 2. For n = 1; it follows from Lagrange Theorem that there is a c1 2 (x; x0) such that

R1(x) = f(x)� f(x0)�
f 0(x0)

1!
(x� x0) =

f
00
(c1)

2!
(x� x0)2:: (23)

In this case, we can solve c1 to be about 0:5107442329: Next we de�ne

F1(y) =
f 00(c1)

2!
(y � x0)2 (24)

for y 2 [x; x0]: We sketch z = R1(y) and z = F1(y) for y 2 [x; x0] as follows (z = R1(y) in red
and z = F1(y) in green):
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Remark 8 We note that for f(x) = cos x in [x; x0] = [0; 0:725]; the remainder R1(y) and
F1(y) are already very close in the interval [0; 0:725]; which is not surprising since cosx can
be approximated nicely locally with a degree two polynomial. Thus, by computing appropriate
values c; c1 and etc. we are able to approximate the remainder Rn(y) in [x; x0] by using Fn(y);
which is a polynomial of degree n+ 1:

5 Conclusion

In this paper, we demonstrated geometrically how the proofs of Mean Value and Cauchy Mean
Value Theorems are merely taking the di¤erence between two quantities (see equations (2) and
(5)). Furthermore, to understand how the Cauchy Mean Value Theorem is stated, we simply
apply Mean Value Theorem on a parametric curve. The equation (11) can be made intuitive by
equations (4) and (5) with animation and help of a Dynamic Geometry Software. We further use
graphical and numerical capabilities within software packages (see [ClassPad] and [Maple]) to
give alternative interpretations to Lagrange Remainder�s Theorem. The evolving technological
tools allow us to experiment abstract concepts and make mathematics more accessible to more
students.
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