What is Version Control?

Allow several people to edit a file.
* Emailing around the current copy is dismal!



What is Version Control?

Allow several people to edit a file.
* Emailing around the current copy is dismal!
* Why google-docs not good for coding!?



What is Version Control?

Allow several people to edit a file.
* Emailing around the current copy is dismal!
* Why google-docs not good for coding!?

Central Repo Model:

* Btw:“repo’="repository”



What is Version Control?

Allow several people to edit a file.
* Emailing around the current copy is dismal!
* Why google-docs not good for coding!?

Central Repo Model:
* check out a file to work on it

p Jp J ¥ 4

* Btw:“repo’="repository”



What is Version Control?

Allow several people to edit a file.
* Emailing around the current copy is dismal!
* Why google-docs not good for coding!?

Central Repo Model:
* check out a file to work on it
* when checking back in (*“ commit”), auto-merge

differences. If conflict, merge by hand and
re-check-back-in.

p Jp J ¥ 4

* Btw:“repo’="repository”



What is Version Control?

Allow several people to edit a file.
* Emailing around the current copy is dismal!
* Why google-docs not good for coding!?

Central Repo Model:
* check out a file to work on it
* when checking back in (*“ commit”), auto-merge

differences. If conflict, merge by hand and
re-check-back-in.

p Jp J ¥ 4

* Btw:“repo’="repository”

Key advantages:



What is Version Control?

Allow several people to edit a file.
* Emailing around the current copy is dismal!
* Why google-docs not good for coding!?

Central Repo Model:

* check out a file to work on it

* when checking back in (*“ commit”), auto-merge
differences. If conflict, merge by hand and
re-check-back-in.

p Jp J ¥ 4

* Btw:“repo’="repository”

Key advantages:
* if cloud-based, work from anywhere



What is Version Control?

Allow several people to edit a file.
* Emailing around the current copy is dismal!
* Why google-docs not good for coding!?

Central Repo Model:

* check out a file to work on it

* when checking back in (*“ commit”), auto-merge
differences. If conflict, merge by hand and
re-check-back-in.

p Jp J ¥ 4

* Btw:“repo’="repository”

Key advantages:
* if cloud-based, work from anywhere
* maintain complete history



What is Version Control?

Allow several people to edit a file.
* Emailing around the current copy is dismal!
* Why google-docs not good for coding!?

Central Repo Model:

* check out a file to work on it

* when checking back in (*“ commit”), auto-merge
differences. If conflict, merge by hand and
re-check-back-in.

p Jp J ¥ 4

* Btw:“repo’="repository”

Key advantages:

* if cloud-based, work from anywhere
* maintain complete history

* can roll back to any previous commit



What is Version Control?

Allow several people to edit a file.
* Emailing around the current copy is dismal!
* Why google-docs not good for coding!?

Central Repo Model:

* check out a file to work on it

* when checking back in (*“ commit”), auto-merge
differences. If conflict, merge by hand and
re-check-back-in.

p Jp J ¥ 4

* Btw:“repo’="repository”

Key advantages:

* if cloud-based, work from anywhere

* maintain complete history

* can roll back to any previous commit

* easy to experiment: clone, change, then trash it!

10



What is Distributed Version Control?

Old-school: RCS, CVS, subversion

New-school: mercurial, git: independent repositories

11



What is Distributed Version Control?

Old-school: RCS, CVS, subversion

New-school: mercurial, git: independent repositories

Git centralized model:

* Clone the central repo (one-time only) to your local
machine. Gives you:
* Your working-copy of files, and
* a local repo (inside .git/), with full history.

* Edit working copy, and then commit to local repo.

* When stable, push changes back to central repo.

* Frequently: pull changes from central repo.

12



Centralized workflow mantra

* |. pull

* 2. edit

* 3. commit

* 4. pull

* 5. push

Do steps 2-3 often (e.g. every time it compiles sucessfully);

do steps 4-5 whenever you are passing all your tests.

13



Centralized workflow mantra

* |. pull at start of work-session

« 2. edit

* 3. commit

* 4. pull

* 5. push

Do steps 2-3 often (e.g. every time it compiles sucessfully);

do steps 4-5 whenever you are passing all your tests.

14



Centralized workflow mantra

* |. pull at start of work-session

* 2. edit for a short time

* 3. commit

* 4. pull

* 5. push

Do steps 2-3 often (e.g. every time it compiles sucessfully);

do steps 4-5 whenever you are passing all your tests.

15



Centralized workflow mantra

* |. pull at start of work-session

* 2. edit for a short time

* 3. commit small changes

* 4. pull

* 5. push

Do steps 2-3 often (e.g. every time it compiles sucessfully);

do steps 4-5 whenever you are passing all your tests.

16



Centralized workflow mantra

* |. pull at start of work-session
» 2. edit for a short time

* 3. commit small changes

* 4. pull again! -- to incorporate others' work

* 5. push

Do steps 2-3 often (e.g. every time it compiles sucessfully);

do steps 4-5 whenever you are passing all your tests.

17



Centralized workflow mantra

* |. pull at start of work-session
» 2. edit for a short time

* 3. commit small changes
* 4. pull again! -- to incorporate others' work
* 5. push your work-session

Do steps 2-3 often (e.g. every time it compiles sucessfully);

do steps 4-5 whenever you are passing all your tests.

18



some helpful git commands

Syntax: git command-name options

Examples:
°* git clone https://ibarland@bitbucket.org/ibarland/sample.git

*git pull
* git status

*git diff someFile
* git add othrFile

*git commit
* git push

Many more commands and concepts (e.g. forking, pull
requests); see tutorials and/or ““ The Git Book”.

19



some helpful git commands

Syntax: git command-name options

Examples:
°* git clone https://ibarland@bitbucket.org/ibarland/sample.git

*git pull no options
* git status

*git diff someFile
* git add othrFile

*git commit
* git push

Many more commands and concepts (e.g. forking, pull
requests); see tutorials and/or ““ The Git Book”.

20



some helpful git commands

Syntax: git command-name options

Examples:
°* git clone https://ibarland@bitbucket.org/ibarland/sample.git

*git pull no options
* git status

shows which files have changed etc.
*git diff someFile

show the before/after versions
* git add othrFile

*git commit
* git push

Many more commands and concepts (e.g. forking, pull
requests); see tutorials and/or *“ The Git Book”.

21



some helpful git commands

Syntax: git command-name options

Examples:
°* git clone https://ibarland@bitbucket.org/ibarland/sample.git

*git pull no options
* git status
shows which files have changed etc.

*git diff someFile

show the before/after versions
* git add othrFile

files not part of repo unless you add them

*git commit
* git push

Many more commands and concepts (e.g. forking, pull
requests); see tutorials and/or *“ The Git Book”.

22



some helpful git commands

Syntax: git command-name options

Examples:
°* git clone https://ibarland@bitbucket.org/ibarland/sample.git

*git pull no options
* git status
shows which files have changed etc.

*git diff someFile

show the before/after versions
* git add othrFile

files not part of repo unless you add them

*git commit . wise to commit per-dir
* git push

Many more commands and concepts (e.g. forking, pull
requests); see tutorials and/or *“ The Git Book”.

23



some helpful git commands

Syntax: git command-name options

Examples:
°* git clone https://ibarland@bitbucket.org/ibarland/sample.git

*git pull no options
* git status
shows which files have changed etc.
*git diff someFile
show the before/after versions
* git add othrFile
files not part of repo unless you add them
*git commit . wise to commit per-dir
* git push back to central repo

Many more commands and concepts (e.g. forking, pull
requests); see tutorials and/or *“ The Git Book”.

24



